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Figure 1: Volume rendering of the jet dataset, down-sampled using hixels. We visualize the scalar field g defined in Section 6, indicating the
likelihood that the isosurface at isovalue κ = 0.506 passes through a voxel. From left-to-right, we show hixels that block 23, 83, and 323 data
values. Opacity is a triangle function centered at g = 0 and color is a rainbow map, red for high values, green for middle, and blue for low.

ABSTRACT

One of the greatest challenges for today’s visualization and analysis
communities is the massive amounts of data generated from state of
the art simulations. Traditionally, the increase in spatial resolution
has driven most of the data explosion, but more recently ensembles
of simulations with multiple results per data point and stochastic
simulations storing individual probability distributions are increas-
ingly common. This paper introduces a new data representation for
scalar data, called hixels, that stores a histogram of values for each
sample point of a domain. The histograms may be created by spatial
down-sampling, binning ensemble values, or polling values from a
given distribution. In this manner, hixels form a compact yet infor-
mation rich approximation of large scale data. In essence, hixels
trade off data size and complexity for scalar-value “uncertainty”.

Based on this new representation we propose new feature detec-
tion algorithms using a combination of topological and statistical
methods. In particular, we show how to approximate topological
structures from hixel data, extract structures from multi-modal dis-
tributions, and render uncertain isosurfaces. In all three cases we
demonstrate how using hixels compares to traditional techniques
and provide new capabilities to recover prominent features that
would otherwise be either infeasible to compute or ambiguous to
infer. We use a collection of computer tomography data and large
scale combustion simulations to illustrate our techniques.
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1 MOTIVATION

Prompted by the ever increasing performance of modern supercom-
puters, state of the art simulations continue to increase in size and
complexity. Furthermore, not only are ever more complex phe-
nomena simulated at higher resolutions but new forms of data are
emerging. Traditionally growth in complexity has been driven by an
increase in spatial resolution, enabling the study of more intricate
situations. More recently, ensembles of simulations are becoming
more common to study different outcomes and determine the sen-
sitivity and uncertainty inherent in predictive simulations [22]. In
such systems the spatial resolution is multiplied by the number of
ensemble members (potentially hundreds or thousands of individ-
ual simulations) and each data point now contains many possible
outcomes. Finally, new paradigms are being developed in which
simulations natively act on random variables or probability distri-
bution functions instead of scalar fields to characterize errors [9].

In the first two cases (high spatial resolution and ensembles of
runs) the data in its native form is too large to be handled with
traditional techniques while in the third case (intrusive uncertainty
quantification or stochastic simulations) few techniques exist that
are able to process such a representation. Therefore, a common ap-
proach is to pull samples from the continuous distributions thus cre-
ating an ensemble. Given the size of such data it is natural to search
for reduced representations. Subsampling or computing means and
standard deviations of spatial regions are both examples of this.
However, such techniques have significant drawbacks, especially
when data is not well-characterized by any single value which is
the case for multi-modal data. As an alternative, we propose a new
unified data representation called hixels, which at each sample point
stores a histogram of values. Hixels naturally approximate all three
original data representations, can be significantly smaller than the
source data, and provide a more graceful degradation of the origi-
nal information than subsampling or averaging since they preserve
information of the scalar function range.

Consider the synthetic example shown in Figure 2. This “en-
semble” is created by drawing samples from two different distribu-
tions, a Poisson distribution (left top) and a Gaussian distribution
(left bottom). Simple statistical analysis of this ensemble is unable
to identify basic characteristics. For example, when computing a
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(a) (b)

Figure 2: A 2D hixel data set generated by sampling images drawn
from a Poisson and a Gaussian distribution. (a) Mean surfaces of
each distribution, Poisson on top (magenta), Gaussian on the bot-
tom (cyan). (b) Mean surface for all sampled values shown in yellow,
overlaid with the Poisson and Gaussian. This surface loses charac-
teristics of both.

single representative scalar field for the data such as the mean value
(right) the resulting surface no longer shows characteristics of either
distribution. Furthermore, computing the probability of traditional
features occuring is inconclusive. For example, we have computed
the probability that each hixel corresponds to an actual minimum,
maximum, saddle, or regular point. The results of this test were
entirely inconclusive; each sample had approximately 53% chance
of being regular, 20% chance of being a minimum, 20% chance
of being a maximum, and 7% chance of being a saddle point. An
effective solution must in fact combine both traditional feature ex-
traction and statistical methods. To address this need, we intro-
duce three new techniques to visualize and analyze hixel data and
demonstrate our results using large scale simulations and computer
tomography data. Our contributions in detail are:

• We introduce hixels: per sample histograms as a new data
representation for large scale and/or probabalistic data;

• We describe algorithms to extract approximations of common
topological structures from hixel data;

• We develop techniques to segment multi-modal data by split-
ting individual histograms into their modes and correlate
neighboring modes;

• We present a new method to define and render uncertain iso-
surfaces; and

• We demonstrate results using large scale simulation and CT
data.

2 RELATED WORK

Topology. The topological tools presented in this paper are based
on Morse theory, a mathematical tool to study how the “shape” of
a function is related to the shape of its domain [20, 21]. Morse
theory is a well understood concept in the context of smooth scalar
fields, and has been effectively extended to piecewise-linear [8] and
discrete [10] domains.

Using this underlying mathematical framework, approaches for
computing the Morse-Smale (MS) complex have been used for the
analysis of scalar valued data. For example, Laney et al. [17]
used the descending 2-manifolds of a two-dimensional MS com-
plex to segment an interface surface and count bubbles in a simu-
lated Rayleigh-Taylor instability. Bremer et al. [3] used a similar
technique to count the number of burning regions in a lean pre-
mixed hydrogen flame simulation. Gyulassy et al. [14] used care-
fully selected arcs from the 1-skeleton of the three-dimensional MS
complex to analyze the core structure of a porous solid.

Algorithms for computing the MS complex have been presented
in the PL context [2, 8] as well as the discrete context [13, 16, 18].
One of the goals of this article is to extend the use of these ap-

proaches to include functions f that are probability functions in-
stead of deterministic scalars. Thus, in addition to reviewing topo-
logical methods, we review literature characterizing uncertain or
stochastic fields defined over a geometric space.
Data Representations. In this paper we model variable values at
each node of a mesh with a distribution. Alternatively, we could
represent the quantity or quantities of interest across the entire do-
main as a random variable or field indexed on spatial coordinates.
For instance, under specific conditions [31], a stochastic process
can be expressed as a spectral expansion in terms of suitable or-
thogonal eigenfunctions with weights associated with a particular
density. A well-studied example is the Wiener process which can
be formulated as an expansion in terms of multi-variate Hermite
polynomials of normal distributions. Other formulations are avail-
able and have been examined for various classes of modeling such
as flow-structure interaction or diffusion problems [32]. However,
unless a simulation directly produces such a spectral expansion, it
is difficult to obtain one by fitting postulated forms, as decisions
regarding the family of basis functions, the number of terms in the
series, and the order of the polynomials used amount to modeling
choices [7] which are difficult to justify a priori. Another approach,
taken by Adler and Taylor [1], is to compute the expectation of ge-
ometric properties, such as volume and the Euler characteristic, on
excursion sets of spatial Gaussian processes. Again, these tech-
niques require a specific model in order to yield results – one which
may not always be simple or possible to obtain.
Computing the Modes of a Distribution. As part of our com-
putational pipeline for hixelated data, we use topological persis-
tence measures to decompose the distribution into a set of buckets
in which the distribution behaves unimodally. Mode identification
is a problem that has been explored in the statistics community. Ex-
isting mode finding algorithms identify a set of of potential modes
and propose a variety of statistical tests [5, 6, 15, 30] or use function
optimization [11] to identify modes of interest.
Uncertain Contours. Contouring in both two and three dimen-
sions is one of the standard tools of scientific visualization and sev-
eral methods exist to indicate uncertainty in the computation. In
two dimensions the most common form of uncertainty visualiza-
tion is to display the mean values enhanced by the standard er-
ror [19, 27]. Alternatively, Osorio and Broodlie [23] use a fuzzy
colormap to indicate an uncertain contour. In three dimensions,
Rhodes et al. [29] also use the color on a standard isosurface to
indicate uncertainty but their approach does not represent the stan-
dard error or variance along the surface. Brown [4] uses a vibrating
surface to indicate error on a surface and Grigoryan and Rhein-
gans [12] use a displaced point cloud. Most closely related to
the uncertain isosurfaces of Section 6 are the volume renderings
of likelihood functions for atom positions proposed by Rheingans
and Joshi [28]. However, their system is designed for a small, fixed
number of uncertain objects rather than arbitrary isosurfaces. More
recently, Pöthkow and Hege propose techniques for visualizing po-
sitional uncertainties in isosurfaces [25], where uncertainties are
modeled as Gaussian distribution, later extended to include con-
tingency information [26] and tag ray casts with probabilities of
crossing the contour [24] similar to our own.

3 FOUNDATIONS

In order to develop this new interpretation of scalar field data, we re-
view mathematical foundations that we rely on from both the topol-
ogy and statistics community. Finally, we extend the notation from
the literature review with some new terms that will be useful in de-
scribing the algorithm.

3.1 Topological Concepts
We briefly recall that a d-manifold is a topological space that
has a neighborhood homeomorphic to an open subset of the d-
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dimensional space Rd . For example, a line and a circle are 1-
manifolds, and a plane and sphere are 2-manifolds. Let M be a
smooth, compact d-manifold and let f : M→ R denote a smooth
real-valued function on M. Assuming a local coordinate system at
a point x ∈ M, the gradient ∇ f (x) consists of all first-order par-
tial derivatives of f . A point x ∈ M is said to be critical when
∇ f (x) = 0. The Morse Lemma states that in the neighborhood of
a non-degenerate critical point x, a local coordinate system can be
constructed such that

f (x0, . . . ,xn) = f (x)± x2
0± . . .± x2

n.

Critical points are categorized by their index which is equal to the
number of minus signs in the above summation. A function f is
said to be Morse if it satisfies the two genericity conditions: (1) all
critical points are non-degenerate (have invertible Hessians); and
(2) f (x) 6= f (y) whenever x 6= y are critical. The critical points of a
Morse function and their indices capture topological properties of
the manifold domain of f .

An integral line in f is a path in M whose tangent vectors agree
with the gradient of f at every point along the path. The upper and
lower limits of an integral line are its destination and origin, respec-
tively. Unstable and stable manifolds are obtained as clusters of
integral lines having common origin and destination, respectively.
Basins are traditionally defined as the unstable d-manifolds of a d-
dimensional scalar function. A Morse function f is a Morse-Smale
function if its unstable manifolds intersect stable manifolds only
transversally. The intersection of the unstable and stable manifolds
of a Morse-Smale function forms the Morse-Smale (MS) complex.

A function can be simplified by repeated cancellation of pairs of
critical points that are connected by 1-dimensional cells of the MS
complex. This process simulates a smoothing of the function and
represents the function at multiple scales. We measure the weight
of a cancellation by persistence, the absolute difference in value
of the cancelled pair of critical points. A function is simplified to
a persistence threshold by cancelling all critical points with lower
persistence.

3.2 Terminology
As mentioned in the motivation, we are interested in characterizing
an uncertain scalar field defined at many points in a metric space,
M. A hixel is a point xi ∈M with which we associate a histogram of
scalar values, h(xi). In our setting, the h(xi) could either represent
a collection of values in a block of data, collections of values at a
location over a set of runs in an ensemble, or uncertainty about the
potential values a location may represent. Figure 3 shows several
empirical distributions with maxima identified.

3.2.1 Bucketing hixels
When a hixel is defined empirically as a number of values n fi on
a finite support { f j | j ∈ {1,2, . . . ,N f }}, we call each entry of the
support a bin. The probability distribution (specifically here a prob-
ability mass function) is thus given by:

h : fi 7−→
n fi

∑
N f
k=1 n fk

for each possible value f j. Whether this distribution is defined em-
pirically or analytically, for instance as a weighted sum of Gaus-
sians, we are interested in identifying regions of high probabil-
ity associated with peaks in the probability density. For that we
will perform topological segmentation of the histogram to identify
peaks as well as range of function values associated with each peak.
This range of function values is called a bucket. Thus, a bucket will
contain one or more bins and will have a probability given by the
cumulative distribution function over that range of function values.
Figure 3 illustrates how the distributions have been bucketed by

merging maxima of h with their lowest vertical-persistence neigh-
bors in order of their associated probability.

h(x1) h(x2) h(x3) h(x4)

f j f j f j f j

←− x−→

Figure 3: Four probability distributions represented as histograms
h(xi) with 32 bins f j (rotated 90 degrees). Maxima (identified with
black circles) indicate function values with high probability. Colors
indicate bucketing, the aggregation of bins of the histograms into
modes based on the stable manifolds of persistent maxima.

Because our scalar function f is represented by probability dis-
tribution h and we are interested in identifying regions of high prob-
ability, we extend the notion of persistence to areal persistence. By
ordering intervals between maxima and minima according to the
area underneath them, peaks in probability density may be elimi-
nated according to the probability associated with them. The deci-
sion of which of the two possible minima (assuming the maximum
is interior) should be merged with the peak is made using verti-
cal persistence: the smaller vertical persistence indicates the region
to which corresponds the peak to be eliminated. Buckets can be
merged in this fashion until the probability of the smallest bucket
is above some threshold. When the number of sampled values is
small, this threshold must be close to 1 since our confidence will
be low. Assuming that f has a finite variance (so that the central
limit theorem holds), the threshold may be lowered as the number
of values increases. Eventually, each hixel will have one or more
buckets corresponding to probable function values associated with
a peak in the distribution function; each bucket thus corresponds to
an estimated mode of the distribution.

Figure 4 shows the bucket counts for the jet dataset as areal per-
sistence thresholds are varied. At low thresholds, hixels that en-
compass areas of turbulent behavior have high bucket counts. As
persistence simplification is applied, but increasing the threshold of
areal persistence, buckets are merging indicating the most probable
modes of the dataset.

Figure 4: Varying areal persistence and its effect on bucketing for the
Jet dataset. Using hixels with size 163 and 256 bins/histogram, we
vary the areal persistence for all powers of two between 16 and 512,
inclusive. Color indicates how many buckets at that hixel’s position in
(x,y,z) space, red indicating more, blue indicating fewer. At low levels
of persistence, as many as 76 buckets can be selected in the hixel,
but as persistence increases, most hixels have only 1 or 2 buckets.

4 SAMPLED TOPOLOGY

Hixels encode the potential values along with their distributions at
sample locations, a fact that can be exploited in visualizing the un-
certainty in topological segmentations of down-sampled data. We
use a three step process where we (1) sample of the hixels to gener-
ate individual instances of the coarser representation, (2) compute
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Figure 5: We sample the hixel data for an 8x8 blocking of combustion data, and compute the aggregate segmentation for a number of iterations,
also varying the level of persistence simplification. Adjacent white pixels are identified in the interior of the same basin in every single run. The
images converge as the number of iterations increases left to right.

the Morse complex on the instance, and (3) aggregate multiple in-
stances of the segmentation to visualize its variability. We gener-
ate an instance Vi of the down-sampled data by picking values at
each sample location from the co-located hixel. The value is picked
at random as governed by the distribution encoded by the hixel.
By picking values independently from neighboring values, we can
simulate any possible down-sampling of the data, assuming each
hixel’s distribution is independent.

For each sampled field Vi we compute the Morse complex of the
instance using a discrete Morse theory based algorithm [13], and
identify basins around minima for varying persistence simplifica-
tion thresholds. We next create a binary field Ci that encodes the
geometric information of the arcs of the complex. Each sample lo-
cation in Vi contributes a value of 1 to Ci if the sample is on the
boundary of two or more basins, otherwise it contributes 0 if the
sample is in the interior of a basin.

To visualize the variability of the topological segmentation of
subsampled data, we repeatedly sample the hixels producing Vi’s,
and compute their basin boundary representations Ci. After n iter-
ations, an aggregate function is computed over the boundary rep-
resentations, recording the fractional identification of a sample lo-
cation as a basin boundary. Formally, at each sampled location we
compute the aggregate function a j =

1
n ∑Ci

c j. Note that a j can take
values between one and zero, where one indicates it was identified
as the boundary of basins in every instance, and zero meaning it was
identified as interior in every instance. In this manner, we visualize
rasterizations of the geometry of the Morse complex.

One point of interest is the amount of sampling required to cap-
ture a reasonable aggregate field. We perform convergence tests for
a two-dimensional slice through a jet combustion simulation. In
this experiment, we computed a hixel representation for the slice
with blocks of size 8x8 and 16x16. We performed a number of it-
erations, recording the difference in the aggregates between n and
2n iterations, as shown in Figure 6. Furthermore, we visualize in
Figure 5 each aggregate slice for the 8x8 block size, as number of
iterations and topological persistence are varied. The convergence
of these sequences indicates that the distribution represented by the
hixels produces implies stable modes of segmentation.

We further visualize the aggregate segmentation as block size
and level of persistence simplification are varied in Figure 7. In
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Figure 6: We compute the difference in the aggregate segmentations
between n and 2n iterations. We use 8x8 (left) and 16x16 (right) sized
blocks and varying thresholds of persistence simplification.

each case, we performed sufficient iterations for the visualization
to converge to a stable image. In this figure, as the block size is
increased, more variability is present in the analysis of an instance,
as expected. Furthermore, this variability is reduced with increasing
persistence simplification, since the segmentation itself in this case
becomes more stable.

5 TOPOLOGICAL ANALYSIS OF STATISTICALLY ASSOCI-
ATED BUCKETS

As HPC resources increase, ensembles of runs are being computed
more frequently to explore the state space of phenomena of inter-
est. The resulting ensemble data comprises a collection of simula-
tion results, each of which represents a state in the system defined
by different input parameters and/or models. While ensemble data
sets are hailed as a useful mechanism for characterizing the uncer-
tainty in a system, their large size and variability pose significant
challenges for existing analysis and visualization techniques.

In this section we describe a novel statistical technique for re-
covering prominent topological features from ensemble data stored
in hixel format. This computation is aided by the fact that ensem-
ble data has a statistical dependence between runs that allows us to
build a structure representing a predictive link between neighbor-
ing hixels. Our algorithm identifies subregions of space and scalar
values that are consistent with positive association and we perform
topological segmentation on only those regions.

After bucketing all hixels as described in Section 3 we identify
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Figure 7: We sample the hixel data to construct one instance of the subsampled data, and find the pixels on the boundary of basins. We repeat
this until the difference between aggregate segmentations is less than a user-specified threshold. We study the effects of varying block size and
persistence simplification. The block sizes increase left to right, and the corresponding boundaries become less certain.
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h1–h2 e f g
a 4 2 0
b 2 3 1
c 0 5 1
d 6 0 0

h1–h3 h i j
a 5 1 0
b 1 4 1
c 2 4 0
d 0 1 5

Figure 8: The spatial domain in this example is 2-dimensional (x and
y) and the function, f , on which the data is being hixelated is the ver-
tical axis. Hixel h1 has buckets a, b, c, and d, hixel h2 has buckets e,
f , and g, and hixel h3 has buckets h, i, and j. On the right two contin-
gency tables are shown which tabulate the counts of simultaneously
observed values for h1−h2 and h1−h3.

subregions with positive association. We begin by computing a con-
tingency table or tabular representation between each pair of adja-
cent hixels, hi and h j, of the counts of all observed combinations
of values as shown in Figure 8. By considering simultaneously ob-
served values of hi and h j, it is possible to identify pairs of buckets
that co-occur more frequently than if they were statistically inde-

pendent by identifying those whose pointwise mutual information
(pmi) is greater than zero. Pointwise mutual information is a sta-
tistical measure of association between realizations of discrete ran-
dom variables. The pmi of a realization (x,y) of a pair of discrete
random variables (X ,Y ) is defined as:

pmi(x,y) := log
p(X ,Y )(x,y)

pX (x)pY (y)
,

where pX , pY , and p(X ,Y ) respectively denote the probability den-
sity functions of X , Y , and the joint probability (X ,Y ), for all pos-
sible outcomes of X and Y . When the joint probability vanishes the
pmi is set to −∞. Note that if X and Y are independent, then the
pointwise mutual information vanishes everywhere the joint prob-
ability does not. Naturally, as this is a pointwise quantity, a zero
value of the pmi does not indicate mutual independence of the ran-
dom variables.

Taking some ε ≥ 0 threshold on all contingency tables between
neighboring hixels, we obtain a graph of connected buckets. We call
these connected components sheets, illustrated in Figure 9. Sheets
are geometrically like lower-dimensional surfaces in the product
space of the spatial variables and the scalar data. Once we have se-
lected sheets, we compute topological basins of minima and max-
ima on each sheet individually.

We demonstrate results on a mixture of 2 stochastic processes
shown in Figure 10. This data highlights the fact that individual
hixels can be multi-modal and can behave as both a minimum and
maximum. A naive analysis that computes the mean or median of
the hixels, followed by standard topological segmentation would
fail to incorporate the multi-modal nature of the data. Our method
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h(x1) h(x2) h(x3) h(x4)

←− x−→

Figure 9: Once the hixels have been bucketed and modes have been
identified, we compute the pointwise mutual informations between
buckets that are spatially adjacent and connect those with positive
associations to form sheets.

addresses this issue by performing topological analysis directly on
sheets of the domain that have likely simultaneously observable sets
of behavior.

Figure 10: Volume rendering of a hixel data set generated by sam-
pling images 3200 values sampled from a Poisson distribution and
9600 values sampled from a normal distribution.There are 512x512
hixels in this data set, each with 128 bins. The shortest axis in the im-
ages corresponds to histogram bins, thus a spatially higher location
along that axis indicates a higher function value. Color and opacity
are used to illustrate the density of the samples. Thus the lower, right
corner of shows a hixel with 2 distinct probable function values; the
smaller function value is less probable than the larger.

(a) (b)

Figure 11: Basins of minima (a) and of maxima (b) are shown for
the mixture model data set. By computing basins on sheets we are
able to identify prominent features associated with each process in
the mixture model.

There are 512x512 hixels in the mixture model data set, each
with 128 equally-sized bins. The shortest axis in the images cor-
responds to histogram bins, thus a spatially higher location along
that axis indicates a higher function value. The data is a mixture
of two distributions at each hixel with 3200 values sampled from a
Poisson distribution and 9600 values sampled from a Gaussian dis-
tribution. Hue and opacity are used to illustrate the density of the
samples. When the number of values in a hixel bin is zero, the bin
is rendered as a transparent blue. When the number of values in a
bin is large, the bin is rendered as an opaque red.

Figure 12: The logarithm of the χ field in the lifted ethylene jet data
set with 1.3 billion grid points.

The Poisson and Gaussian distributions for each hixel have dif-
ferent parameter values that vary smoothly over the image. The
Poisson lambda parameter is a maximum of 100 at five source
points arranged in a circle and decreases to a minimum value of ap-
proximately 12 proportional to the distance to the nearest of these
points. The Gaussian mean (standard deviation) is a minimum
(maximum) at 4 points arranged in the same circle as the 5 Poisson
source points. The mean varies from 32 to 108 while the standard
deviation varies from 16 to 3.8. Topological basins of minima and
maxima are shown in Figure 11 for all sheets with pmi greater than
zero. Our approach clearly extracts separate sheets belonging to the
two processes which then allows for topological analysis to identify
the prominent features of each distribution.

To compare against down-sampling a large-scale dataset, we also
demonstrate results of this method on a hixelated data set gener-
ated from the log of the χ field of a lifted ethylene jet combustion
data set with 1.3 billion grid points, see Figure 12. The contin-
gency tables between each pair of hixels are computed using ob-
servations between neighboring vertices along shared hixel faces.
Fig. 13 shows the number of buckets per hixel with block sizes of
16 (top-left), 32 (top-middle), and 64 (top-right). The color map
ranges from blue at 1 bucket per hixel to red with 27 buckets per
hixel and, as is to be expected, the number of buckets per hixel in-
creases significantly as the block size increases. On the bottom the
basins of maxima are shown for corresponding block sizes.

(a)

(b)

Figure 13: (a) The number of buckets per hixel is displayed for block
sizes of 16 (left), 32 (middle) and 64 (right). Blue regions have 1
bucket per hixel while the maximum number of buckets per hixel is
27 and is shown in red. (b) The basins of maxima are shown for
corresponding block sizes.
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6 FUZZY ISOSURFACING

When down-sampling larger datasets, hixels enable preserving the
presence of an isosurface within the data. In particular, when hixels
store the counts of all function values present within a block, we can
use that to compute the likelihood of the presence of an isosurface
within that block. Given a hixel hi and an isovalue κ , we slice the
histogram at κ and compute the number of voxels above and below
κ . These two counts, a and b for the count above and below, re-
spectively, give an indication to how frequently that isosurface may
exist within the block. An alternate interpretation is these values
can measure an approximation for the surface area of the isosurface
within the block, Figure 14 visualizes this slicing process.

f

h 1
(

f)

κ

b a

Figure 14: Slicing a histogram.
For an isovalue κ, we can use
the histogram to count the num-
ber of voxels with function val-
ues above (a) and below (b) i.

Using the values a and b, we
can then compute a likelihood
field. We let g = a

b −
b
a . For hix-

els that have a = b, g takes on
the value 0, while g > 0 for hix-
els that are strongly above κ and
g < 0 for hixels that are strongly
below. If a = 0, we set g = b,
and when b = 0 we set g = a.
By volume rendering the g field
we can get a “fuzzy” depiction
of where the isosurface exists
in a hixelated field. By com-
parison, naive down-sampling
of the scalar field could either
move or destroy isovalues. By
visualizing the field g we get a more honest depiction about where
that isovalue was originally in the dataset, and can thus preserve
that information.

(a) (b) (c)

Figure 15: For hixel size 163, we compare the (a) likelihood field g
volume rendered to the isosurfaces computed for κ = 580 for the (b)
mean and (c) lower-left down-sampling. Because of the loss of infor-
mation, the isosurfaces disconnect and lose features.

Figure 16 shows visualizations of the stag dataset for κ =
580, down-sampled from its original size of 832× 832× 494 to
208× 208× 123, 104× 104× 61, 52× 52× 30, 26× 26× 15, and
13× 13× 7. Hixels of block size b3 used 2b2 bins. By tracking
a histogram of values, at lower resolutions we can preserve the fi-
delity of the isosurface and display a more expressive view of the
data. Using only a single value, it is challenging to preserve the thin
features of the isosurface, as the legs, antenna, and mandibles are
hard to preserve. Figure 15 shows a side-by-side comparison of the
isosurfaces produced at κ = 580 for the mean and lower-left fields
as compared to the volume rendering of the g field when the hixel
block size is 163.

7 DISCUSSION

By unifying the representations of large scalar fields from various
modalities, hixels enable the analysis and visualization of data that
would otherwise be challenging to process. We focus on exploring
three proof of concept uses of hixels: generating topological views
of the data by sampling hixels; computing topological basins on

sheets of statistically associated hixels, and visualizing fuzzy iso-
surfaces, indicated by the likelihood that a hixel contains the iso-
surface. Moreover, we believe hixels provide a more honest view
of data, that would otherwise be lost or discarded by simple down-
sampling techniques.

While hixels have utility, they present a number of challenges
and open questions to explore. One important question regards in-
formation preserved by the hixels vs. resolution loss. A study is re-
quired to explore the appropriate number of bins per hixel as well as
persistence thresholds for bucketing and mode seeking algorithms.
The performance of hixels was not currently emphasized in our
work, but the complexity of many techniques used here should al-
low for scaling to larger data. Additional research is required to find
a balance between data storage allotted for the histograms vs. fea-
ture preservation. Finally, further studies to distinguish which topo-
logical features can be easily preserved by hixelation from those
which cannot is required.
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