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Abstract— While there have been advances in visualization systems, particularly in multi-view visualizations and visual exploration,
the process of building visualizations remains a major bottleneck in data exploration. We show that provenance metadata collected
during the creation of pipelines can be reused to suggest similar content in related visualizations and guide semi-automated changes.
We introduce the idea of query-by-example in the context of an ensemble of visualizations, and the use of analogies as first-class
operations in a system to guide scalable interactions. We describe an implementation of these techniques in VisTrails, a publicly-
available, open-source system.
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1 INTRODUCTION

Over the last 20 years, visualization research has emerged as an effec-
tive means to help scientists, engineers, and other professionals extract
insight from raw data. Visualization techniques are key to understand-
ing complex phenomena, and the field has grown into a mature area
with an established research agenda [23]. Software systems have been
developed that provide flexible frameworks for creating complex visu-
alizations. These systems can be broadly classified as turnkey appli-
cations (e.g., ParaView, VisIt, Amira) [15, 5, 22] and dataflow-based
systems (e.g., VTK, SCIRun, AVS, OpenDX) [27, 24, 11, 29]. In this
paper, we focus on dataflow systems, since they are more general and
often serve as the foundation of turnkey applications (e.g., both Par-
aView and VisIt are based on VTK).

Most dataflow-based systems have sophisticated user interfaces
with visual programming capabilities that ease the creation of visu-
alizations. Nonetheless, the path from “data to insight” requires a la-
borious, trial-and-error process, where users successively assemble,
modify, and execute pipelines [30]. In the course of exploratory stud-
ies, users often build large collections of visualizations, each of which
helps in the understanding of a different aspect of their data. A scien-
tist working on a new computational fluid dynamics application might
need a collection of visualizations such as 3-D isosurface plots, 2-D
plots with relevant quantitative information, and some direct volume
rendering images. Although in general each of these visualizations
is implemented in a separate dataflow, they have a certain amount of
overlap (e.g., they may manipulate the same input data sets). Fur-
thermore, for a particular class of visualizations, the scientists might
generate several different versions of each individual dataflow while
fine tuning visualization parameters or experimenting with different
data sets.

In previous work, we proposed a new provenance model that uni-
formly captures changes to pipeline and parameter values during the
course of data exploration [1, 4]. We showed that this detailed his-
tory information, combined with a multi-view visualization interface,
simplifies the exploration process. It allows users to navigate through
a large number of visualizations, giving them the ability to return to
previous versions of a visualization, compare different pipelines and
their results, and resume explorations where they left off.

In this paper, we show how this provenance information can also
be used to simplify and partially automate the construction of new
visualizations. Constructing insightful visualizations is a process that
requires expertise in both visualization techniques and the domain of
the data being explored. We propose a new framework that enables
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the effective reuse of this knowledge to aid both expert and non-expert
users in performing data exploration through visualization.

The framework consists of two key components: an intuitive in-
terface for querying dataflows and a novel mechanism for semi-
automatically creating visualizations by analogy. The query interface
supports both simple keyword-based and selection queries (e.g., find
visualizations created by some user), as well as complex, structure-
based queries (e.g., find visualizations that apply simplification be-
fore an isosurface computation for irregular grid data sets). The query
engine is exposed to the user through an intuitive query-by-example
interface whereby users query dataflows through the same familiar in-
terface they use to create the dataflows (see Figure 1). This simple, yet
powerful approach lets users easily search through a large number of
visualizations and identify pipelines that satisfy user-defined criteria.

While the query interface allows users to identify pipelines (and
sub-pipelines) that are relevant for a particular task, the visual-
ization by analogy component provides a mechanism for reusing
these pipelines to construct new visualizations in a semi-automated
manner—without requiring users to directly manipulate or edit the
dataflow specifications. As Figure 2 illustrates, our technique works
by determining the difference between a source pair of analogous vi-
sualizations, and transferring this difference to a third visualization.
This forms the basis for scalable updates: the user does not need to
have knowledge of the exact details of the three visualization dataflows
to perform the operation. Together, these contributions are a step to-
wards scalable pipeline development and refinement as an integral part
of visualization systems.

Contributions and Outline. To the best of our knowledge, this is
the first work that leverages provenance information to simplify and
automate the construction of new visualizations. The paper is orga-
nized as follows. We review related work in Section 2. In Section 3,
we define a set of basic operations over sets of dataflows. These op-
erations include computing the difference between two pipelines, up-
dating pipeline definitions, and matching similar pipelines. For the
latter, we describe a new algorithm based on neighborhood similari-
ties (Section 5.3). The basic operations are used both in the query-by-
example interface and in creating visualizations by analogy, which are
presented in Section 4. An implementation of the proposed framework
is discussed in Section 5. In Section 6, we present case studies that il-
lustrate how our new dataflow manipulations streamline the process
of constructing visualizations, and provide scalable mechanisms for
exploring a large number of visualizations. We discuss the potential
impact of our work on existing visualization systems in Section 7. We
conclude in Section 8 where we outline directions for future work.

2 RELATED WORK

Visualization systems have been quite successful at bringing visualiza-
tion to a greater audience. Seminal systems such as AVS Explorer and
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Fig. 1. Querying by example. The interface for building a query over an ensemble of pipelines is essentially the same as the one for constructing
and updating pipelines. In fact, they work together: portions of a pipeline can become query templates by directly pasting them onto the Query
Canvas. In his figure, the user is looking for a volume rendered image of a file whose name contains the string “4877”. The system highlights the
matches both at the visualization level (version tree, shown in the middle) and at the module level (shown in the right insets).

Data Explorer [29, 11] enabled domain scientists to create visualiza-
tions with minimal training and effort. The early success of these sys-
tems led to the development of several alternative approaches. SCIRun
[24] focuses on computational steering: the intentional placement of
visualization and human intervention in the process of generating sim-
ulations. The Visualization Toolkit [27] is a library that directly ex-
poses a powerful dataflow API for several programming languages.

However, as scientific visualization becomes more widely used,
several scalability issues have arisen, which range from ensuring good
performance, handling large amounts of data, capturing provenance,
and providing interfaces to interact with a large number of visualiza-
tions. Distributed, parallel systems [5, 3] have been developed to ad-
dress performance and dataset size concerns. Such systems provide a
scalable architecture for creating and running visualization pipelines
with large data.

Another important requirement that has come to the attention of
developers and users of visualization systems is the ability to record
provenance so that computational experiments can be reproduced and
validated. Provenance-aware scientific workflow systems have been
developed that record provenance both for data products (i.e., how a
given result was generated) and for the exploratory process, the se-
quence of steps followed to design and refine the workflows used to
process the data [25, 26, 4]. Provenance mechanisms have also been
proposed for visualization-specific systems. Kreuseler et al. [16] pro-
posed a history mechanism for keeping track of parameter values in
visual data mining, and Jankun-Kelly et al. [13] recently proposed a
formal calculus for parameter changes. VisTrails uses a scheme that
uniformly captures both parameter and pipeline changes [1, 4].

As multiple workflows are manipulated in exploratory processes, it
is important to provide interfaces that allows users to compare their
results. Jankun-Kelly and Ma [12] have proposed a spreadsheet-like
interface for quickly exploring the parameter space of a visualization.
In the area of user interfaces, Kurlander et al. [18, 17] have presented
approaches to streamline the repetitive tasks users often face. The sem-
inal example of a system which uses the same interface to both manip-
ulate and query data is the Query-By-Example database language [31].
We propose a similar approach for querying visualization ensembles
in Section 4.2. Graph searching and query languages have also been
investigated in database systems [28].

The algorithm we describe for matching two pipelines is similar
to a technique developed to match database schemas [21]. It is also
reminiscent of well-known variations of PageRank, which is the basis
for Google’s successful ranking algorithm [2, 19]. Our visualization-
by-analogy mechanism shares some of the objectives of programming-
by-example techniques [20].

3 PIPELINE OPERATIONS

Below, we review some terminology and introduce basic pipeline op-
erations that serve as the basis for query-by-example and visualization
by analogy.

Definitions. A visualization system is a system that provides func-
tionality for graphically displaying data according to a specific set of
rules. The programmatic rules for displaying this data constitute a
pipeline. Executing the pipeline in the visualization system produces
a visualization. The pipeline is composed of modules which define
specific operations and connections which specify the conceptual flow
of data between modules. Each connection links an output port of one
module (the source) with an input port of another module (the destina-
tion). Module state is represented by module parameters. We denote
the set of all visualization pipelines asV.

Operations as functions on V. One important observation that
we leverage throughout the text is that every operation performed on
a pipeline (adding and deleting modules, connections and parameters,
etc.) can be directly expressed as a (potentially partial) function f :
V→V. Many of our results depend on making these functions first-
class elements in the visualization system.

3.1 Computing Pipeline Differences
Dataflow-based systems allow users to create a variety of pipelines,
rather than being restricted to a predefined set of visualizations. In
the process of deriving insightful visualizations, a series of pipelines
is often created by iterative refinement. To understand this process as
well as the derived visualizations, it is useful to compare the differ-
ent pipelines. The standard representation of a pipeline is a directed
graph, with labeled vertices representing operations. Given a pair of
such pipelines, we want to determine the difference between the visu-
alizations they generate. In the following, we show how to describe
and manipulate differences between pipelines.

We define δ :V→V as a function on the space of visualizations,
and ∆ :V×V→ δ as a function that takes two pipelines pa and pb and
produces another function that will transform pa to pb. For brevity, let
δab = ∆(pa, pb). From now on, we will use δ to refer to an arbitrary
∆(a,b). It is clear that δ is not unique: even though δab(pa) = pb
is a necessary constraint, there are no further restrictions. In some
sense, we would like to pick the δab that minimally changes all other
pipelines. We define the distance between pa and pb as the number of
changes necessary to perform the transformation. We then look for the
minimal set of operations that takes pa to pb. As we discuss in section
4.1, this is computationally impractical, so we relax the minimality
requirement and instead use heuristics.
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Fig. 2. Visualization by analogy. The user chooses a pair of visualizations to serve as an analogy template. In this case, the pair represents a
change where a file downloaded from the WWW is smoothed. Then, the user chooses a set of other visualizations that will be used to derive new
visualizations, with the same change. These new visualizations are derived automatically. The pipeline on the left reflects the original changes, and
the one on the right reflects the changes when translated to the last visualization on the right. The pipeline pieces to be removed are portrayed in
orange, and the ones to be added, in blue. Note that the surrounding modules do not match exactly: the system figures out the most likely match.

We also restrict our initial analysis to the simple case where pb
is derived from pa — the user created pb by applying a finite set of
changes to pa. We denote this relationship as pa < pb. Then, a system
with some knowledge of how the pipelines were constructed should be
able to determine the differences between related pipelines using this
history. We demonstrate such an implementation in Section 5.

When pa < pb, we can then say δab is the sequence of operations
that was used to derive pb from pa. However, few pairs of pipelines
respect this property, and we would like ∆ to be completely general.
We start with a simple extension: if δab exists, so should δba. In fact,
we would like

δabδba = e

where e is the identity function. We can achieve this if our sequence
of changes consists of invertible atomic operations. Specifically, sup-
pose δab = fn ◦ · · · ◦ f1 where each fi has a well-defined inverse. For
example, if fi is the operation of adding a module to the pipeline, f−1

i
is the operation of deleting that module from the pipeline. Then,

δba = δ
−1
ab = f−1

1 ◦ · · · ◦ f−1
n

From now on, we assume that any function that operates on V has an
inverse (note that both functions might still be partial).

Our ultimate goal is to apply the pipeline difference result δ to
pipelines other than those used to create it. To analyze where δ is ap-
plicable, we introduce the domain and range context of δ . Formally,
the domain context of δ , D(δ ), is the set of all pipeline primitives re-
quired to exist for δ to be applicable. We represent these contexts as
sets of identifiers. For example, if δ is a function that changes the file
name parameter of a module with id 32, D(δ ) is the set containing
the module with id 32. Similarly, the range context of δ , R(δ ), is the
set of all pipeline primitives that were added or modified by δ . Note
that D(δ−1) = R(δ ), which provides an easy way to compute range
contexts.

3.2 Updating Pipelines
Finding differences is not only a useful technique for analyzing
pipelines, but it can also be used to create new visualizations. The
idea is similar to applying patches in software systems: the difference
results can be applied to modify an existing pipeline. Given a δ , it is
straightforward to apply it to a pipeline. Recall that δ is a sequence
of actions that transform a pipeline. Thus, updating a pipeline pa is as
simple as computing δ (pa). Note, however, that δ can fail if an ele-
ment of D(δ ) does not exist in pa. However, if we allow δ to continue
despite one or more operations failing, we can still achieve a partial
update.

3.3 Matching Pipelines
While computing pipeline differences is an integral part in reason-
ing about multiple visualizations, another important operation is to
match similar pipelines, i.e., we wish to find correspondences between
pipelines. The result of pipeline matching can either be a binary de-
cision (whether the pipelines match) or a mapping between the two
inputs. Note that different metrics and thresholds can be used to de-
termine the similarity of two pipelines. In the remainder of this sec-
tion, we discuss an approach for finding the best mapping between two
pipelines.

Let D represent the set of all domain contexts and define map :
V×V→ (D → D) as a function which takes two pipelines, pa and
pb, as input and produces a (partial) map from the domain context of
pa to the domain context of pc. The map may be partial in cases where
elements of pa do not have a match in pb or vice versa. Notice that
if pa < pb, map(pa, pb) = mapab is the identity on all elements that
were not added or deleted in the process of deriving pb.

To construct such a mapping, we formulate the problem as a
weighted graph matching problem. Let Ga = (Va,Ea) be the graph
corresponding to the pipeline pa. In a straightforward definition, Va
would be the modules in pa and Ea the connections in pa. However,
one could consider other definitions such as the dual of this represen-
tation. For Va, we define a scoring function s : Va×Vb → [0.0,1.0] that
defines the compatibility between vertices. For example, the similarity
score of two modules that are exactly the same can be set to 1.0 and
the score of modules M1 and M2 such that M1 is a subclass of M2 may
be set to 0.6.

We define a matching between Ga and Gb as a set of pairs of vertices
M = {(va,vb)} where va ∈Va and vb ∈Vb. A matching is good when

∑
(va,vb)∈M

s(va,vb)

is maximized. A good matching on pipelines is one that corresponds to
a good matching on their representative graphs. Given a good match-
ing M, we can define a mapping from pa to pb as va → vb for all
(va,vb) ∈ M.

4 SCALABLE PIPELINE MANIPULATION PRIMITIVES

Using the concepts defined in the previous section, we now introduce
two new primitives for manipulating visualizations.

4.1 Complexity Analysis
The operations described in this section are theoretically hard to com-
pute. Computing a minimal ∆(pa, pb), or matching two pipelines pa
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Fig. 3. Query-by-example and analogy-based updates provide a simple way for users to manipulate multiple pipelines simultaneously. In this
example, the user selects parts of a query result and updates them all with an analogy that introduces a preprocessing module to the pipeline that
supersamples the original dataset.

and pb, is, in general, as hard as solving a subgraph isomorphism.
This problem is trivially reducible from the MAX-CLIQUE problem,
a well-known NP-complete problem. Additionally, MAX-CLIQUE is
a particularly hard problem: there is no approximation algorithm for it
with a subpolynomial approximation factor [9]. Since we cannot get a
good approximation, heuristics for both problems are well justified.

In this work, we make use of the information stored in δ functions
both to reduce the search space and to increase the effectiveness of
these heuristics.

4.2 Query-By-Example

Working with multiple visualizations is problematic if they have to be
treated individually. In the process of visualizing different data sets,
trying different techniques, and tweaking parameters, a user may cre-
ate a large number of visualizations. It is clearly impractical to lo-
cate those that match certain criteria by examining each individually.
To solve the problem of locating pipelines, we introduce the idea of
query-by-example for visualizations. Instead of formulating the search
criteria in a structured language, a user builds a pipeline fragment that
contains the desired features. The exact same interface used in build-
ing a pipeline can be used for building a query, which means that a
user familiar with building pipelines can easily query them. Figure 1
shows an excerpt of the query-by-example functionality.

Our algorithm is based on the observation that searching all
pipelines for a given pattern is equivalent to determining whether a
candidate pipeline matches the pattern. Once a query, represented as
a pipeline fragment, is constructed, we can use the pipeline match-
ing algorithm on each candidate pipeline to determine if it satisfies
the query. Depending on user preferences, we can require an exact
or an approximate match. While each element of the query pipeline
(modules, connections, parameters, etc.) needs to be included in the
match, a candidate pipeline that contains more elements than those in
the query pipeline still satisfies the query.

It should be noted that differences can help optimize our matching.
For example, suppose that we have a given query pipeline pq and two
candidate pipelines pa and pb. If we find that pa satisfies the query,
and we know δab, we can check to see if the domain context D(δab)
contains any elements that matched pq. If it does not, we know that
pb also matches. Similarly, if pa does not match pq and R(δab) does
not contain necessary elements for matching pq, we know that pb will
not satisfy the query. Thus, we can determine all pipelines that satisfy
our query by iteratively matching and updating the matches based on
differences.

4.3 Visualization by Analogy
When creating visualizations, users often have to integrate new fea-
tures into existing pipelines. For example, a user may wish to improve
a given visualization by adjusting parameter so they match a published
result. The user might also simply want to switch to a different visu-
alization algorithm. In either case, there usually exists an example
that demonstrates the given technique. A user can infer the necessary
changes, and then apply them to a particular visualization. This ana-
logical reasoning is very powerful, and we show that visualization by
analogy can be (partly) automated. Figure 2 illustrates the process of
creating visualizations by analogy.

Two ordered pairs are analogous if the relationship between the first
pair mirrors the relationship between the second pair. Therefore, if we
know what the relationship is between the first pair, and are given the
first entity of the second pair, we should be able to determine the other
entity of that pair. More concretely, given a difference between δ two
pipelines, we should be able to modify an arbitrary pipeline so that the
resulting changes mirror δ .

To automate this operation, we need to compute the difference be-
tween two pipelines and apply this difference to another (possibly un-
related) pipeline. Suppose that we have three pipelines pa, pb, pc,
and wish to compute pd so that pa : pb as pc : pd . We discussed the
problem of finding the difference in Section 3.1, but recall that updat-
ing a pipeline pc with an arbitrary δ will fail if pc does not contain
the domain context of δ . When this is the case, we need to map the
difference so that it can be applied to pc.

We wish to express δab so that δab(pc) succeeds. This is exactly
what mapac does; recall that to construct this operator we need to
find a match between pa and pc, as described in Section 3.3. More
precisely, we first compute δ ∗cb = mapac(pa, pb) and then find δ ∗cb(pc).

In summary, our algorithm is:

1. Compute the difference: δab = ∆(pa, pb)

2. Compute the map: mapac = map(pa, pc).

3. Compute the mapped difference: δ ∗cb = mapac(δab)

4. Compute pd = δ ∗cb(pc)

5 IMPLEMENTATION

To implement the scalable manipulation primitives introduced in Sec-
tion 4, we use the freely available VisTrails system. VisTrails auto-
matically captures the evolution of workflows which allows straight-
forward implementations of the pipeline operations presented in Sec-
tion 3. We provide a quick overview of some key concepts in VisTrails;
the reader is referred to [1, 4] for more details.
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Fig. 4. Example of an analogy between pipelines where there is no
perfect module matching. The difference in the left pipeline pair is trans-
ferred to the right pipeline pair. Note, however, that the module names
are not the same—the system must find the most likely pairing based
on the similarity measure described in Section 5.3.

In VisTrails, as a user constructs a visualization, the entire history
of manipulation is transparently stored in the version tree (the term vis-
trail is used interchangeably). Each action f that modifies the pipeline
(e.g., adding or deleting a module, connecting modules, or changing
a parameter) is represented explicitly as a function f :V→V, where
V is the space of all possible visualizations. A pipeline is then the
composition of these functions and is materialized by applying the re-
sulting function to the empty visualization.

5.1 Pipeline Differences

In a vistrail, the straightforward application of the action-based for-
malism allows the computation of simple differences. When pa < pb,
∆(pa, pb) is the sequence of actions from pa to pb which can be read
directly from the vistrail. In addition, we have implemented the in-
verse operation of f for each type of operation in VisTrails so δba is
also easily constructed. However, it is likely that we wish to compute
a difference between pipelines that are not related in such a simple
manner. Specifically, suppose that pa 6< pb and pb 6< pa. Note that
there exists some pc (possibly the empty pipeline, which is in general
the least common ancestor of both pa and pb) such that pc < pa and
pc < pb. Then,

δab = δacδcb = δ
−1
ca δcb

Thus, we can find ∆(pi, p j) for any two pipelines, even if they are not
directly related.

5.2 Pipeline Updates

Pipeline updates are also easily computed by taking the action-based
representation of a pipeline and appending the new actions given by
a δ . Although it is always possible to append the new actions in a
vistrail, the resulting sequence of actions may be invalid. As noted
earlier, this update can fail if the domain context of δ does match pa.
More specifically, each operation in δ can succeed or fail based on
whether the elements to be modified or deleted exist in pa.

5.3 Pipeline Matching

In our matching algorithm, we use the standard graph representation
where vertices correspond to modules and edges to connections. In
addition, even though we still discriminate between input and output
ports, we do not enforce directionality on the edges so that we can
diffuse similarity along them.

Recall that our goal in pipeline matching is to determine a mapping
from the context of one pipeline to another. To do so, we convert the
pipelines to labeled graphs and define a scoring function for nodes
based on their labels. With a graph for each pipeline, we compute the
mapping by pairing nodes that score well and enforcing connectivity
constraints between these pairs.

Let Ga and Gb be the graphs corresponding to pa and pb. For
our implementation, we define modules as vertices and connections
as edges. Denote a connection between two vertices a and b as a ∼ b

Fig. 5. Example matching generated by the pipeline matching algorithm.
Thicker edges correspond to stronger correspondences. Notice that the
correspondences get progressively better as the algorithm iterates. This
matching corresponds to Example 2 in Section 6.

and define the scoring function that measures the pairwise compatibil-
ity of vertices by

c(va,vb) =
|ports(va)∩ports(vb)|
|ports(va)|+ |ports(vb)|

where ports(v) denotes the ports of the module corresponding to the
vertex v. This measure emphasizes port matching: it gives higher
scores to modules that can be more easily substituted for each other.
Such a substitution depends solely on the compatibility of the input
and output ports and not on module name or functionality. Figure 4
shows an example of such an approximate matching.

Notice that this scoring function is defined only for nodes, and
therefore, it does not help us in comparing the topologies of the
pipelines. While a simple maximum bipartite matching [6] between
nodes may succeed in finding a map between nodes, we would like to
enforce some connectivity constraints on the graphs. Intuitively, we
want to define the similarity between vertices as a weighted average
between how compatible the modules are and how similar their neigh-
borhoods are. The similarity score strikes a balance between the lo-
cality of pairwise compatibility and the overall similarity of the neigh-
borhood. This definition seems circular, but, surprisingly, it leads to
a very simple and elegant matching technique based on the dominant
eigenvector of a Markov chain [19].

We create a graph G = Ga ×Gb that combines both Ga and Gb. In
this graph, we define a vertex va,b for each pair of vertices va ∈Va,vb ∈
Vb. Similarly, an edge vi, j ∼ vk,` exists when vi ∼ vk in Ga and v j ∼ v`
in Gb. (G is the graph categorical product of Ga and Gb.) Notice
that the connectivity of G encodes the pairwise neighborhoods of the
vertices in Ga and Gb. We now want to translate our intuitive algorithm
from the previous paragraph into an iterative algorithm. First, we need
the following notation:

• πk(G) is the measure of pairwise similarity after k steps

• A(G) is the adjacency matrix of G normalized so that the sum of
each row is one (a row with sum zero is modified to be uniformly
distributed)

• c(G) is the normalized vector whose elements are the scores for
the paired vertices in G: c(G) = (c(va,vb),va ∈ Ga,vb ∈ Gb)

• α is a user-defined parameter that determines the trade-off be-
tween pairwise scoring and connectivity

To iteratively refine our estimate, we diffuse the neighborhood similar-
ity according to the following formula:

πk+1 = αA(G)πk +(1−α)c(G)
= MGπk

(1)

The final pairwise similarity between modules is given by π∞ =
limk→∞ πk. For our purposes, c(G) gives a good measure of similarity
so A(G) is used mainly to break ties between two alternatives. Thus,
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Fig. 7. Switching the rendering technique by analogy. The analogy
template on the left specifies that volume rendering modules should be
replaced by isosurfacing ones. The analogy target and the resulting
pipeline are shown, together with the resulting visualization.

we choose a small weight for the neighborhood in our implementation
(α = 0.15). Though this formulation makes intuitive sense, we want
to ensure that repeated iteration always converges and does so quickly.

It is clear that MG in Equation 1 is a linear operator; therefore, if π

converges, it does so to an eigenvector. The theory of Markov chains
tells us that because of the special structure of MG, it has spectrum
(1,α,α2, · · ·) [19], and so the iteration is exactly the power method
[8] for eigenvalue calculation. Hence, the iteration will converge to
the single dominant eigenvector, and each iteration will improve the
estimate linearly by 1−α . Since we are using a small α , this ensures
quick convergence. From this iteration, we obtain π∞ which contains
the relative probabilities of va ∈ Ga and vb ∈ Gb matching for each
possible pair. For each vertex in va, the vertex in vb whose pair has
the maximum value in π∞ will be considered the match. Figure 5
illustrates how the matchings are refined as the mapping algorithm
iterates.

5.4 Query-by-example
Recall that the benefit of query-by-example is that users do not have to
learn a query language or a new interface to find matching pipelines.
Our implementation presents the same interface used in building a
pipeline as it does for querying an ensemble of pipelines, as shown
in Figure 1. A user constructs a query pipeline by dragging modules
from a list of available modules or copying and pasting pieces of ex-
isting pipelines. Parameters and connections can also be specified in a
similar manner. When the user executes the query, the system searches
the current version tree for all pipelines that match that query.

As discussed in Section 4, we want to find pipelines that contain the
query pipeline. Currently, this matching is computed on a per pipeline
basis. Specifically, for each pipeline, we topologically sort the vertices
of the graph induced by the pipeline and match the vertices of the
query graph. If all vertices match, we return the candidate pipeline as
a match. All matches are selected and highlighted in the version tree
so that users can quickly see query results. Selecting a version will
display the pipeline with the portion of the pipeline that matched the
query highlighted.

5.5 Visualization by analogy
There are two steps involved in applying an analogy to a pipeline.
First, the user defines the analogy template by selecting the two
pipelines whose difference is to applied to another pipeline. Sec-
ond, the user selects another pipeline and applies the analogy to that
pipeline, creating a new pipeline. In VisTrails, these operations can be
executed in either the version tree pane of the builder window or the
visualization spreadsheet. In either case, the application of the analogy
creates a new version in the vistrail.

In the version tree, an analogy is defined by dragging the version
representing initial pipeline to the version representing the desired
result. This operation displays the difference between the pipelines
and the user is able to click a button to create an analogy from these
pipelines. To apply the analogy, the user right-clicks on the version
representing the pipeline and selects the desired analogy.

Creating and applying analogies in the VisTrails Spreadsheet is sim-
ilar but even easier to use. The spreadsheet supports a viewing mode
and a composition mode. In the composition mode, a user can create
an analogy by dragging one cell into another cell. To apply the anal-
ogy, the user drags the pipeline to be modified to a new cell, at which
point the analogy is applied and the new visualization displayed.

The computation of the analogy mirrors the algorithm described in
Section 4.3. More concretely, for pipelines pa and pb defining the
analogy and the pipeline to be updated pc, we derive δab using the
version tree. We then match Ga and Gc using the algorithm described
in Section 5.3 to obtain mapac and use this function to compute δ ∗cb
which can then be applied to pc to produce a new pipeline pd .

6 CASE STUDIES

We present three examples that illustrate the proposed primitives.

Example 1: Updating Inputs in Multiple Pipelines In this sce-
nario, we want to compare different isosurface extraction techniques.
In particular, we wish to investigate how resilient the techniques are
to subsampled or oversampled data. Typically, the techniques are first
compared using raw inputs. The task, then, is to update the pipelines
with the new test data.

There are several ways to address this problem. The most straight-
forward one is to develop a preprocessing script that converts the files.
Although this is feasible, it is not desirable since it puts the burden to
manage the data on the user. At the least, it requires explicit manage-
ment of intermediate files, and it does not provide an explicit record
of the desired experiment. A better alternative is to directly create
new dataflows that exercise the test regime. It is clear, however, that
this can be time consuming if the specialist must first examine each
pipeline to determine whether it needs to be updated and only then
perform the required modifications.

It is therefore desirable to automate this process. With query-by-
example, we can find all matching pipelines with one operation. With
analogies, we can perform the desired update once, capture that change
as an analogy and apply it to the matching pipelines. Not only does
this save time and effort, but it ensures that all pipelines are updated.
In addition, each update is done in a similar manner; the possibility
that the updates are inconsistent is reduced.

In this example, we construct a query template by copying the rel-
evant portion of the pipeline onto the Query Canvas. This procedure
returns a set of pipelines (highlighted in Figure 3) which we need to
update. We first update one of the pipelines by directly adding the re-
sampling step. Then, we define an analogy template using the original
pipeline and the updated one. We apply this analogy to automatically
update the other pipelines that match the query. As result, several new
results are produced without requiring the user to manually update
each individual pipeline.

Example 2: Changing a rendering algorithm In this example,
we show a moderately complex change in a pipeline that replaces an
entire rendering technique with another. When designing an effective
visualization, one algorithm tends to perform better than the alterna-
tives. It is natural, then, that a single visualization will be tried with
different algorithms. When the best result is identified, the user must
change the other visualizations to reflect this. In this example, we
show that it is possible to replace an entire algorithm by analogy.

The visualization portrayed in Figure 7 renders an ITK [10] scalar
field in VTK [27], using the Teem tools [14] to generate the appro-
priate data format. While in the original change, there was only one
generated view, in the analogy target there are two renderings, so the
system must correctly decide the proper one to modify.

Example 3: Chaining Analogies We have discussed that one
can modify a pipeline by analogy as a single update operation. How-
ever, one can also use analogies to quickly combine multiple examples.
In this example, illustrated in Figure 6, we show how three different
techniques can be combined to transform a very simple pipeline into a
visualization that is not only more complicated but also more useful.

In many scientific fields, the amount of data and the need for inter-
action between researchers across the world has led to the creation of
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Fig. 6. Creating complex pipelines by chaining simple analogies. From three simple examples, the user creates a complex visualization that creates
a web page with enhanced molecule rendering, whose results are fetched from the Protein Database, an online macromolecular database.

online databases that store much of the domain information required.
Scientists are concerned not only with using data from these central-
ized repositories but also publishing their own results for others to
view. In this example, we show how analogies can be used to modify
a simple pipeline that visualizes protein data stored in a local file to
obtain data from an online database, create an enhanced visualization
for that protein, and finally publish the results as an HTML report.

We begin with a vistrail that contains pipelines that accomplish each
of the individual tasks outlined above. Specifically, we have a simple
pipeline p0 that reads a file with protein data and generates a visu-
alization of that data. We also have pipelines p1 and p′1 where the
difference between the two is that p1 reads a local file and p′1 reads
data from an online database, pipelines p2 and p′2 where p2 features
a simple line-based rendering and p′2 improves the rendering to use
a ball-and-stick model. Finally, p3 displays a visualization while p′3
generates an HTML report that contains the visualized image.

To create the new pipeline, we compute the analogy between p1 and
p′1 and apply it to p0. Then, we compute the analogy between p2 and
p′2 and apply that the result of the previous step. Finally, we compute
the analogy between p3 and p′3 and apply it. The new pipeline p∗0
prompts the user for a protein name, uses that information to download
the data for that protein, creates a ball-and-stick visualization of the
data, and embeds that image in an HTML report.

The benefits of using analogies to generate this new pipeline not
only include faster results but also a lower level of knowledge needed
to modify pipelines. One can imagine a scientist who executes a
pipeline to create a visualization downloading a pipeline which pub-
lishes data to the web and adding the same capability to their pipeline
via analogy. Instead of trying to find the correct modules and manu-
ally modifying the pipeline, the scientist can use the analogy from the
example pipeline to add the new feature automatically.

7 DISCUSSION

We argue that both query-by-example and visualization by analogy
are useful operations that provide efficient solutions for what are oth-
erwise manual, time-consuming tasks. The basic operations intro-
duced in Section 3 rely both on the graph structure of pipelines and
on pipeline modification history. As discussed, global comparisons
of graphs are intractable in general, but the fact that visualization
pipelines translate to labeled graphs where the nodes are largely dis-
tinct allows us to define effective heuristics. We believe that this
framework can be used to develop additional primitives that signifi-
cantly reduce the amount of work required to maintain and integrate
ensembles of visualizations.

The proposed primitives can be easily implemented in dataflow-
based visualization systems that provide undo/redo capabilities. As

long as undo/redo operations are represented explicitly in the sys-
tem (for example, using the Command design pattern [7]), a straight-
forward serialization of these would achieve the wanted capabilities.
Module and connection representations may vary across systems, but
the framework and techniques apply as long as the elements can be
translated to labeled graphs.

As with most heuristics-based approaches, our approach to match-
ing is not foolproof, and there are cases where it may fail to produce
the results a user expects. For example, if a user applies an analogy to
a pipeline that shares little or no similarity with the starting pipeline,
the matching algorithm will return a mapping which is likely to be
meaningless. However, when application of an analogy fails or pro-
duce poor results, the user can either discard or refine the resulting
pipeline: analogies always construct new pipelines—they do not mod-
ify existing pipelines.

Analogies can be highly subjective. In some cases, applying an
analogy can lead to ambiguity and derive multiple results. Figure 8
shows an example of an analogy that is supposed to resample an input
file before continuing with the rest of the pipeline. Instead of removing
a connection from the raw file to downstream modules, the application
keeps the old connection in addition to adding the new connection to
the resampling module. In this case, a user might have to “clean up”
the results of the pipeline. Our current pairwise similarity score tries to
establish a compromise in the absence of domain-specific knowledge
about modules. Formulating and incorporating such knowledge into
the matching is certainly possible and desirable. An interesting avenue
for future work is to investigate how to acquire this information in an
unobtrusive way, for example, by taking user feedback about derived
analogies into account. as an avenue for future work. Furthermore, our
current implementation finds the best mapping in a greedy fashion, on
a per-module basis. There are alternative ways of using π∞, and this
investigation is part of future work.

One important consideration when introducing new manipulation
primitives is the impact on how users interact with them. Query-by-
example represents an intuitive way for users to query pipelines. One
could imagine a querying tool that narrows results as the query is built
(e.g., similar to auto-completion). Also, to extend our analogy tool,
users’ input could be used to guide the matching process, especially in
cases where the automatic construction fails. Constraint information
might be incorporated into the matching, allowing it to generate better
results in situations where the information in the pipeline definitions
is not sufficient. Along the same lines, it may be useful to allow users
to explore the results of many possible matchings.
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Fig. 8. A situation where creating pipelines by analogy fails. The in-
tended effect when defining the analogy was to replace the raw file with
a preprocessing step. Note, however, that there still is one lingering
connection, highlighted in red.

8 CONCLUSIONS AND FUTURE WORK

We have described a new framework that leverages visualization
provenance to simplify the construction of new visualizations. This
framework provides scalable and easy-to-use primitives for querying
pipeline ensembles and for creating multiple visualizations by analogy.
We have also proposed efficient algorithms and intuitive interfaces for
realizing these primitives in a visualization system.

There are many avenues for future work. The use of domain-
specific distance measures between pipelines and modules may be
useful for customizing analogy generation in some domains (for ex-
ample, for transfer function design and comparison). We are currently
investigating machine learning techniques for automatically determin-
ing common pipeline operations on a large database of visualizations,
allowing templates to also be determined automatically.
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