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Abstract
Direct volume rendering techniques have been successfully applied to visualizing volumetric datasets across many
application domains. Due to the sensitivity of transfer functions and the complexity of fine-tuning transfer func-
tions, direct volume rendering is still not widely used in practice. For fast volumetric data exploration, we propose
Importance-Based Accumulated Transparency Modulation which does not rely on transfer function manipulation.
This novel rendering algorithm is a generalization and extension of the Maximum Intensity Difference Accumu-
lation technique. By only modifying the accumulated transparency, the resulted volume renderings are essentially
high dynamic range. We show that by using several common importance measures, different features of the volu-
metric datasets can be highlighted. The results can be easily extended to a high-dimensional importance difference
space, by mixing the results from an arbitrary number of importance measures with weighting factors, which all
control the final output with a monotonic behavior. With Importance-Based Accumulated Transparency Modula-
tion, the end-user can explore a wide variety of volumetric datasets quickly without the burden of manually setting
and adjusting a transfer function.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

By employing the physically based absorption-emission
optical model, direct volume rendering techniques have
been successfully applied to visualizing volumetric datasets
across many application domains. Contemporary volume
rendering techniques can generate very appealing visual re-
sults, and can achieve real-time interactive renderings on
modern graphics hardware. However, to generate such com-
pelling results usually requires an expert at transfer function
editing to both setup an initial transfer function and manually
adjust the transfer function to achieve the desired results. In
general, the initial transfer function setup is a bottle neck for
volume visualization since exploration of datasets depend on
a transfer function that can extract the relevant features. To
further complicate the volume rendering experience, the re-
sulting image is very sensitive to transfer function adjust-
ment; small changes can lead to large visual differences.
Automatic transfer function design removes the difficulty
from the end-user but automatic methods for generating ini-

tial transfer functions have not proved to be general across
many different datasets.

To make direct volume rendering useful in practice, semi-
automatic methods for generating an initial transfer function
and transfer function editing have been an active area of
research. Semi-automatic methods which provide the end-
user with a simplified interface, perhaps incorporating do-
main knowledge, provide an easier method for transfer func-
tion design [KD98]. Some semi-automatic, or fully auto-
matic, methods for initial transfer function generation can
employ artificial intelligence algorithms, which rely on a
large computational process and a populated knowledge
base [TLM05]. Other methods, such as the Maximum In-
tensity Difference Accumulation (MIDA) [BG09], do not
modify the transfer function but rather modify the rendering,
thereby allowing fast inspection and exploration of volumet-
ric datasets.

In this paper, we present Importance-Based Accumulated
Transparency Modulation, which is a novel rendering algo-
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rithm generalized and extended from MIDA. After related
work (Section 2), we introduce formulas of Importance-
Based Accumulated Transparency Modulation (Section 3).
We discuss common importance measures that can be ap-
plied (Section 4). We further discuss importance measures in
multi-dimensional space (Section 5). Then we propose de-
signing guidelines for fast volume exploration applications
using our algorithms (Section 6). The results are presented
and discussed in Section 7, and the paper is concluded in
Section 8.

2. Related Work

Modern volume rendering techniques can be traced back to
work done in the 1980s. Kajiya [KVH84] used ray tracing
to render objects represented by densities within a volume
grid, based on light scattering equations. Work of Drebin et
al. [DCH88] and Levoy [Lev89] laid out the foundation for
volume rendering, such as gradient-based shading and vol-
ume classification. Max [Max95] reviewed several different
models for light interaction with volume densities, including
absorbing, glowing, reflecting, and scattering.

Volume classification has also been an active area of re-
search. Kindlmann et al. [KD98] proposed the histogram
volume, which captures the relationship between volumet-
ric quantities in a position independent, computationally
efficient fashion. They presented semi-automatic methods
of generating transfer functions for direct volume render-
ing. Kniss et al. [KKH02] presented multi-dimensional
transfer functions for interactive volume rendering. Cor-
rea et al. [CM08, CM09] proposed visibility-driven and
size-based transfer function designing techniques for vol-
ume exploration. Yet, transfer function design with multi-
dimensional histograms still requires strong background
knowledge about the data and is time consuming. Meth-
ods have been proposed to accelerate the transfer function
design process. Rezk-Salama et al. [RSKK06] introduced
an additional level of abstraction for parametric models of
transfer functions, and they proposed using semantics mod-
els for transfer function design. Tzeng et al. [TLM05] pro-
posed an approach to the volume classification problem that
couples machine learning and a painting metaphor to al-
low more sophisticated classification in an intuitive manner.
Kohlmann et al. [KBKG09] presented a method for the inter-
active identification of contextual interest points within vol-
umetric data by picking on a direct volume rendering image.
Wan et al. [WOCH09] presented an interactive visualization
tool, which simplified 2D transfer function modification to
several parameters that can be quickly adjusted. They ap-
plied the tool on confocal datasets in neurobiology research.

Depth complexity in volumetric datasets can lead to vi-
sual clutter. As de-cluttering is often one requirement for
rendering volumetric datasets, many techniques have been
proposed. Lorensen et al. [LC87] presented the march-
ing cubes algorithm to extract iso-surfaces from volume

datasets. Wallis et al. [WMLK89] proposed maximum ac-
tivity projection that extracts "hot-spots" from the volume
data, and the algorithm is later commonly referred as Maxi-
mum Intensity Projection (MIP). Malzbender [Mal93] pre-
sented a volume rendering technique using the Fourier
Projection-Slice Theorem, and generated "X-ray-like" im-
ages. Levoy [Lev92] improved the algorithm by adding
depth cueing and shading to the Fourier Volume Rendering.
Weiskopf et al. [WEE03] proposed clipping methods that are
capable of using complex geometries for volume clipping.
Rezk-Salama et al. [RSK06] proposed opacity peeling tech-
nique that reveals structures in the volume dataset, which are
difficult to visualize by transfer functions without explicit
segmentation.

Viola et al. [VKG04, VKG05] presented importance-
driven volume rendering. Features within the volumetric
data are first classified according to object importance, and
for each feature, various representations (levels of sparse-
ness) from a dense to a sparse depiction are defined.

Bruckner et al. [BG09] introduced Maximum Intensity
Difference Accumulation (MIDA), which combines the ad-
vantages of Direct Volume Rendering and Maximum Inten-
sity Projection. MIDA was extended for rendering multi-
channel data and applied to visualization in neurobiology
research [BSG∗09]. We based our work on the ideas in-
troduced by MIDA, and we incorporated concepts from
importance-driven volume rendering into a generalized for-
mulation.

3. Importance-Based Accumulated Transparency
Modulation

3.1. Maximum Intensity Difference Accumulation
(MIDA)

Equation 1 is the standard front-to-back volume compositing
equation:

cdst ← cdst +(1−αdst)·csrc

αdst ← αdst +(1−αdst)·αsrc
(1)

MIDA modulates the accumulated color and transparency
by inserting a modulation factor β into the volume composit-
ing equation (Equation 2):

cdst ← β·cdst

αdst ← β·αdst

cdst ← cdst +(1−αdst)·csrc

αdst ← αdst +(1−αdst)·αsrc

(2)

The modulation factor β is calculated by the difference
of the current maximum scalar intensity (sacc) and the in-
coming sample’s scalar intensity (si) along a viewing ray,
specifically by the following equation (Equation 3):

β =
{

1− (si− sacc) if si > sacc
1 otherwise

(3)
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Assuming the important features of the volumetric
datasets are of high scalar values, MIDA changes the volume
compositing behavior by decreasing the accumulated color
and opacity when the incoming sample’s scalar intensity is
higher than any of those before it along the viewing ray,
so that high scalar value features in the volumetric datasets
won’t be occluded as much as in a standard compositing.
For practical use, important features may not be just those
of high scalar values. Depending on the applications, impor-
tant features can also be those of high gradient magnitude or
of high depth value along the viewing ray. MIDA provides a
method to control the volume compositing behavior, and it
can be generalized to make it suitable for other features of
different characteristics.

3.2. Generalized Formulation from MIDA

Equation 4 is our generalized formula:

αdst ← β·αdst

cdst ← cdst +(1−αdst)·csrc

αdst ← αdst +(1−αdst)·αsrc

where

β = B(∆imp( fi, facc)),such that B ∈ (0,1]

fi = F(incoming sample)

facc = F(accumulated samples)

(4)

We name equation 4 Importance-Based Accumulated
Transparency Modulation, as it modulates the accumulated
transparency αdst with a factor β, which is calculated by the
difference of importance between the incoming sample and
accumulated result along a viewing ray. In equation 4, F is a
measure of importance, which should be designed according
to application requirements. fi is the importance of the in-
coming sample for compositing, and facc is that of the same
measure applied to accumulated result. ∆imp is the function
calculating the quantified difference between fi and facc, and
the difference is usually calculated by, but not restricted to,
subtraction. B is an assembling function, which re-maps im-
portance difference to the desired range of modulation factor
β. In general, we want to decrease the value of β when in-
coming sample has a higher importance measure than that of
the accumulated result, and keep β as one otherwise.

For MIDA, the measure of importance F is the maximum
scalar intensity. MIDA is a special case of Equation 4 except
that we don’t change the accumulated color as MIDA does.
Equation 4 only inserts the transparency modulation opera-
tion before the standard volume compositing equation. We
treat transparency and color separately because they behave
differently: color can accumulate to greater than one and
the result can be tone-mapped to the normal display range,
while transparency can never accumulate above one, which
is full opacity. By extending the volume compositing to high
dynamic range, features can be better highlighted. The dis-
cussion of sophisticated tone-mapping [DCWP02,YNCP06]

is beyond the scope of this paper and we use the bright-
ness/contrast and a gamma curve to adjust the high dynamic
range result (see Figure 8).

In the next section, we look at some common measures
we can use for importance-based accumulated transparency
modulation.

4. Importance Measures for Accumulated
Transparency Modulation

In Equation 4, we don’t specify the formula how importance
is measured or how importance difference is calculated, as
they are application-dependent. But there are common im-
portance measures that can apply to a wide variety of vol-
umetric datasets, just like the maximum intensity measure
given by MIDA.

A

B C

D E

Figure 1: The Cadaver Head dataset is rendered with dif-
ferent methods. A: Normal direct volume rendering; B: Ac-
cumulated transparency modulation with maximum inten-
sity measure; C: Accumulated transparency modulation with
maximum gradient magnitude measure; D: Maximum inten-
sity projection; E: Maximum gradient magnitude projection.
Features such as cavities inside of the skull, which used to be
occluded by the skull if maximum intensity measure is used,
are visualized by using the maximum gradient measure. The
transfer functions used for all the results are the same, which
is a simple linear ramp grayscale colormap combined with
a linear opacity ramp.

4.1. Gradient Magnitude Measures

One problem of the maximum intensity measure given by
MIDA is that internal features of lower scalar intensity may
be occluded by external structures (Figure 1B). A natural ex-
tension of the maximum intensity measure to deal with the
problem is using gradient magnitude as the importance mea-
sure, as widely used in transfer functions [Lev89, KKH02,
KD98].

By replacing the maximum intensity measure, we obtain
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the maximum gradient magnitude measure, which calculates
the importance by maximum gradient magnitude. The equa-
tion to calculate β is:

β = B(∆imp(gradi,gradacc))

=
{

1− (gradi−gradacc) if gradi > gradacc
1 otherwise

(5)

In Equation 5, gradi is the gradient magnitude of the in-
coming sample, and gradacc is the current maximum gra-
dient magnitude along the viewing ray. When the incoming
sample has a higher gradient magnitude than the accumu-
lated maximum gradient magnitude, the accumulated trans-
parency is increased, to reveal the features having more im-
portance.

As seen from the result (Figure 1C), features of high gra-
dient magnitude values can be enhanced. The result from
calculating importance difference by Equation 5 combines
characteristics from direct volume rendering and maximum
gradient magnitude projection. Comparing maximum inten-
sity projection with maximum gradient magnitude projec-
tion (Figure 1D, E), the latter can better reveal sharp features
of the datasets.

If we calculate the importance difference by two adja-
cent samples, the accumulated maximum gradient magni-
tude gradacc becomes gradi−1, and Equation 5 becomes:

β = B(∆imp(gradi,gradi−1))

=
{

1− (gradi−gradi−1) if gradi > gradi−1
1 otherwise

(6)

Equation 6 increases the accumulated transparency when-
ever an increase of gradient magnitude is detected along a
viewing ray.

A B C

Figure 2: The Engine Block dataset rendered with differ-
ent methods. A: Direct volume rendering; B: Accumulated
transparency modulation with maximum gradient magnitude
measure; C: Accumulated transparency modulation with im-
portance difference calculated by gradient magnitudes of
adjacent samples.

Figure 2 compares the difference of the results using the
two gradient magnitude measures. The result of calculating

the gradient magnitude difference of adjacent samples has
a more transparent look, as more samples along the viewing
ray contribute to the final result. The result also tends to have
a wider dynamic range, if the dataset contains many non-
transparent voxels. As stated in Section 3.2, we use bright-
ness/contrast and gamma curve to tone-map the high dy-
namic range output to normal display range, which is suf-
ficient and effective for fast data exploration.

4.2. Scalar Intensity Measures

Inspired by Equation 6, we can use the scalar intensity as
the importance measure, but only consider the difference be-
tween two adjacent samples. The equation to calculate β be-
comes:

β = B(∆imp(si,si−1))

=
{

1− (si− si−1) if si > si−1
1 otherwise

(7)

In Equation 7, si is the scalar intensity of the incom-
ing sample, and si−1 is that of the previous sample along
the viewing ray. With this scheme, the accumulated trans-
parency is increased whenever there is an increase of scalar
intensity along the viewing ray.

A B C

Figure 3: The Tooth dataset rendered with different methods.
A: Direct volume rendering; B: Accumulated transparency
modulation with importance difference calculated by scalar
intensity increase; C: Accumulated transparency modula-
tion with importance difference calculated by scalar differ-
ence. By using scalar intensity measures, structures such as
enamel and pulp of the tooth can be clearly seen, which are
obscured if only maximum intensity or gradient measures
are used.

Figure 3B shows the result of the tooth dataset when
Equation 7 is applied. To better see the boundaries between
different structures with different scalar intensities, we can
increase the accumulated transparency whenever a change
of scalar intensity is detected. Then the equation to calculate
β becomes Equation 8:

β = B(∆imp(si,si−1))

= 1−|si− si−1|
(8)

Figure 3 compares the results of the tooth dataset when

c© The Eurographics Association 2010.



Y. Wan & C. Hansen / Fast Volumetric Data Exploration with Importance-Based Accumulated Transparency Modulation

two scalar intensity measures are applied. We can see that
the different features of the tooth are visualized very easily,
which can’t be clearly observed by using any of the previ-
ously proposed measures. The difference between using the
two scalar intensity measures is rather subtle, with Figure 3C
having a more transparent look.

FE

DC

BA

Figure 4: The Carp dataset rendered with different meth-
ods. A: Direct volume rendering; B-F: Accumulated trans-
parency modulation with importance measures: (B) Maxi-
mum intensity, (C) Maximum gradient magnitude, (D) Gra-
dient magnitude increase, (E) Scalar intensity increase, (F)
Scalar intensity difference. Internal organs as well as bones
are better revealed in D, E, and F.

Figure 4 compares the results of the carp dataset. We can
see that maximum intensity measure is good at revealing
bones, and maximum gradient magnitude measure subtly
shows us some of the internal organs. The latter three mea-
sures have similar results, and all can visualize more internal
features.

4.3. Depth Measure

Standard volume compositing with simple transfer function
settings often results in quick accumulation of the voxel
transparency, and deeper structures are often occluded by
those before them. To compensate the transparency accumu-
lation along the viewing direction, we can use depth values
to calculate importance in accumulated transparency mod-
ulation. Depth measure assumes important features are al-
ways further down along the viewing ray, and the equation
for calculating β is:

β = B(∆imp(di,di−1))

= 1− (di−di−1)

= 1− (Sample Step)

(9)

In Equation 9, di and di−1 are the depth values of the
incoming sample and its previous sample along the view-
ing ray. With depth measure, accumulated transparency can
never reach full opacity, as the sample step is always greater
than zero. All samples along the viewing ray contribute to

the final result, and the resulting image always has a trans-
parent look. Figure 5 compares the results of direct volume
rendering and that of accumulated transparency accumula-
tion with depth measure. The occluding structures of the
latter become transparent. It shows great advantage by al-
lowing the high dynamic range color accumulation, as we
can better keep local contrast from shading and detailed fea-
tures, which will otherwise result in blurry images, if only
the transparency in the transfer function is increased.

A B

Figure 5: The Aneurysm dataset rendered with A: Direct
volume rendering; B: Accumulated transparency modula-
tion with importance difference calculated from depth dif-
ference. The enlarged regions have many overlapped ves-
sels. With the depth measure, the occluding vessels become
transparent, revealing underlying vessels.

Figure 6 shows the rendered result of the head of visi-
ble male dataset. We found that by using gradient magnitude
thresholding and accumulated transparency modulation with
depth measure together, boundaries of different features are
clearly visible, yet adjusting the parameters only takes sec-
onds.

Figure 6: The head of Visible Male dataset rendered with
accumulated transparency modulation. The importance dif-
ference is calculated by depth difference, and the gradient
magnitude threshold is increased for de-cluttering.
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5. Importance Measures in Multi-Dimensional
Importance Difference Space

Section 4 introduced several common importance measures
that can be used in accumulated transparency modulation.
We also see that different measures can reveal different fea-
tures of the datasets. In addition to the common measures,
we can design more rules to calculate the importance differ-
ences, based on the application requirements. Then we want
to calculate the modulation factor β, out of a series of im-
portance differences. In order to design applications that are
easy to use, we need to determine parameters that influence
the final visual output monotonically, and expose these pa-
rameters to the end-user as simple widgets such as sliders
and numeric inputs.

Consider N importance difference rules {∆impi
|i =

1, ..,N}, and the N importance differences calculated from
the rules {δimpi

|i = 1, ..,N}. The N importance differences
form the basis of the N-dimensional parameter space (impor-
tance difference space), from which we want to calculate β.
In practice, the weighted average is the most straightforward
and commonly used:

β = B(δimp1
,δimp2

, ..,δimpN
)

= 1−Clamp(w1·δimp1
+w2·δimp2

+ ..+wN ·δimpN
,0,1)

= 1−Clamp(
N

∑
i=1

wi·δimpi
,0,1)

(10)

In Equation 10, {wi|i = 1, ..,N} are the weights specify-
ing the influence of each importance measure, and the final
output is the blending of the individually applied measures.
Since when importance differences are fixed, β is linear to
each weight wi, the final output, which is visually mono-
tonic to the scaling of modulation factor β, is also monoton-
ically influenced by each weighting factor of the importance
measures. Thus, the weights are provided to the end-user for
adjustment.

Figure 7 shows the results when two importance measures
(maximum intensity and maximum gradient magnitude) are
applied and weighted. The final rendering combines features
from those when the two measures are applied separately,
and is monotonically influenced by the weighting factors.

6. Application Design for Fast Volumetric Data
Exploration

We have introduced a simple formula for calculating modu-
lation factor β (Equation 10), which is capable of combining
features together from applying different importance mea-
sures. We also show that the weights in Equation 10 influ-
ence the visual output monotonically, so they are easy for
end-user to adjust. In our experiments on different datasets,
we also found that some simple forms of transfer func-
tion manipulation can be very helpful, such as scalar in-
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Figure 7: The Cadaver Head dataset rendered with accumu-
lated transparency modulation. Two importance measures
are applied, and their effects are controlled by two weight-
ing factors: wx and wy. The results show that when the two
weights change, we can have features such as bones and cav-
ities visualized at the same time, which used to be visualized
by two different importance measures applied separately.

tensity and gradient magnitude thresholds. Although these
parameters are applied to the transfer function, they can
be controlled with sliders and are very useful when used
jointly with importance measures of accumulated trans-
parency modulation.

Based on our current and previous work, we propose the
following guidelines for designing parameter setting widgets
of fast volume exploration applications:

• Settings are parameterized to values that each changes
one dimensionally. A good example is gradient magni-
tude thresholding. It comes essentially from 2D transfer
function design, but we only expose one simple parame-
ter to the end-user.

• Settings take effect only on final rendering, without in-
termediate results. Rather than switching back and forth
between intermediate results such as a histogram and the
final rendering, the user needs to focus on the final result
for fast operations.

• Parameters have monotonic and easily predictable be-
havior. In practice, software with hundreds of parameters
to control one output result can still be easy and efficient
to use, thanks to the fact that each parameter contributes
monotonically and has predictable influence on the result.
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Though a full featured volume visualization application
can have more complicated widgets designed for maximum
output quality, if easy-to-use, efficiency, and effectiveness
are the design goals for a volume exploration application,
following these guidelines is sufficient. We developed a pro-
totype application based on these guidelines, which is dis-
cussed in the next section.

7. Results and Discussion

Importance 

Measures

Transfer 

Function 

Thresholds

Tone 

Mapping

Sampling 

Rate

Figure 8: The user interface of our prototype program.

A B C

D E F

G H I

Figure 9: The Visible Male dataset rendered with
importance-based accumulated transparency modulation al-
gorithm. A: Maximum intensity weight only; B: Maxi-
mum gradient magnitude weight only; C: Intensity increase
weight only; D: Gradient magnitude difference weight only;
E: Intensity difference weight only; F: Depth weight in-
creased and high gradient magnitude threshold decreased
to reveal the brain; G: Mixed weights; H: Mixed weight
with low intensity threshold increased; I: Mixed weights with
high intensity threshold decreased.

Integrating importance-based accumulated transparency
modulation algorithms into existing volume rendering ap-
plications is easy. We incorporated the proposed importance
measures into a prototype application and tested it on a wide
variety of datasets. The user interface of the application is
shown in Figure 8, and the results from one of the datasets
we tested are shown in Figures 9. However, all the figures
of this paper are generated with this application. The initial
transfer function for all of the figures is a simple linear ramp
grayscale colormap combined with a linear opacity ramp.

Compared with transfer function design and editing in
standard direct volume rendering, importance-based ac-
cumulated transparency modulation can visualize features
more quickly, and the same importance measures and op-
erations can be applied to a wide variety of datasets. We
have shown certain importance measures derived from the
local properties of the volume datasets, such as scalar value,
gradient magnitude and depth, which are also widely used
in transfer function design. To further extend the variety
of importance measures and the usefulness of our method,
global properties can also be considered. Unlike transfer
function design and editing in standard direct volume render-
ing, which becomes difficult to manipulate when the dimen-
sion of parameter space exceeds three, importance-based ac-
cumulated transparency modulation can virtually incorpo-
rate arbitrary number of importance measures and yet still
maintain ease of interaction. By setting the weights of im-
portance measures as user-adjustable parameters, which all
have monotonic influence on the final rendering, the user can
learn this predictable behavior of the application quickly.
For unfamiliar volume datasets that the user does not have
much knowledge of, experimenting by trial-and-error may
be the most proper, if not the only, method for initial explo-
ration. Importance-based accumulated modulation provides
the user such a platform — the user can highlight interesting
structures by quickly changing the weights for importance
measures, and obtain an overall idea about the content of the
datasets. Even the least skilled user can get started quickly
by randomly dragging the sliders for the weights. While in
order to effectively use traditional multi-dimensional trans-
fer functions relying on histogram volumes, the user needs to
be capable of reading features from the histogram and have
a good understanding of the histogram volume.

As accumulated transparency modulation changes the
volume compositing behavior by only modifying the ac-
cumulated transparency, an initial transfer function is still
required. For high-quality results with images rendered
with specifically colored features, extensive transfer function
editing is still required. Accumulated transparency modula-
tion provides an easy method for exploration of the volume
data quickly, thus it can serve as a guide for further trans-
fer function manipulation, or can be used jointly with trans-
fer function editing. Since accumulated transparency modu-
lation is a view-dependent method, there is possibility that
some importance measures lead to visual artifacts when the
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user is rotating the datasets, due to the abrupt change of the
calculated importance from adjacent voxels. But in practice,
the phenomenon is rarely observed, because features in the
datasets usually span multiple voxels and project to multi-
ple pixels of the final results, which make the visual artifacts
rare except for highly noisy data.

8. Conclusion and Future Work

In this paper, we presented Importance-Based Accumulated
Transparency Modulation, which is generalized from previ-
ous work on MIDA. We have shown that by using different
importance measures and calculating the transparency mod-
ulation factor β, we can visualize different features from
a volumetric dataset. Multiple measures can be also easily
incorporated into a simple form, and the final rendering is
monotonically controlled by the weights of the measures.

For future work, we would like to explore other impor-
tance measures, and how they can be applied to specific
application areas. Combining Importance-Based Accumu-
lated Transparency with transfer functions that have classi-
fied the data such that occluded relationships could be ex-
posed would be an interesting application.
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