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Abstract—Scientific visualization and illustration tools are designed to help people understand the structure and complexity of sci-
entific data with images that are as informative and intuitive as possible. In this context the use of metaphors plays an important
role since they make complex information easily accessible by using commonly known concepts. In this paper we propose a new
metaphor, called “Topological Landscapes,” which facilitates understanding the topological structure of scalar functions. The basic
idea is to construct a terrain with the same topology as a given dataset and to display the terrain as an easily understood represen-
tation of the actual input data. In this projection from an n-dimensional scalar function to a two-dimensional (2D) model we preserve
function values of critical points, the persistence (function span) of topological features, and one possible additional metric property
(in our examples volume). By displaying this topologically equivalent landscape together with the original data we harness the natural
human proficiency in understanding terrain topography and make complex topological information easily accessible.

Index Terms—Feature Detection (primary keyword), User Interfaces, Visual Analytics, Contour Tree, Terrain, Topology, SOAR
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1 INTRODUCTION

Scalar functions are an ubiquitous type of scientific data used to repre-
sent a wide variety of phenomena in application areas including chem-
istry, climate modeling, medicine, and physics. One of the fundamen-
tal tasks in scientific visualization is to provide users with a correct
general understanding of data complexity and structure and to deter-
mine (i) if any major unexpected features may be present, and (ii) at
which locations there may be a greater need for interactive exploration
and detailed data analysis.

Classical approaches providing a quick overview of data include
displaying multiple isosurfaces [1] or the use of direct volume render-
ing with varying transfer functions [2]. However, such techniques only
show a small sub-set of the data in any one image and depend heavily
on parameter selection. This requires users to combine information
from a potentially large number of images. Furthermore, it is usually
impractical to interactively explore the complete parameter space.

To complement direct visualizations, histograms of various type
and dimension [3, 4, 5, 6, 7] have been proposed to reduce the time
spent on trial and error data exploration. Such methods are most suc-
cessful when used in conjunction with direct visualization. Direct
visualization is very intuitive and familiar to users while histograms
provide an overview of the data with respect to one or multiple param-
eters. However, the effectiveness of histograms is often limited as they
only provide aggregate global information, are not localized spatially,
and often machine learning techniques [8, 9] are necessary to utilize
their full potential.

An alternate approach to understanding the structure of a func-
tion is to compute its topology, for example, by extracting its contour
tree [10, 11, 12]. This type of analysis provides a complete study of
the variation of a function and describes all its features and their loca-
tion in space either in terms of critical points [12] or in terms of entire
regions [13]. Moreover, one can compute additional properties, such
as area/volume [14] or genus [15], that further quantify the shape of
isosurfaces in a particular region. Knowledge of this complete and ac-
curate information can enhance and guide standard visualization tech-
niques [16, 14].
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Topological information is very abstract and difficult to expose to
a user. Direct visualization of a contour tree in a linked view system
has been tried [14, 17] and proven to be a powerful interface for data
exploration. However, its usage is still hampered by presenting the
topological information as a graph, which is difficult for a user to relate
to the structure of a scalar field.

In this paper, we take a classical approach to facilitate the under-
standing of complex scientific information by developing metaphors
that leverage human intuition [18]. In particular, we propose a terrain
metaphor for presenting the topological information provided by con-
tour trees together with additional metric information associated with
its branches, e.g., the volume associated with each topological feature.
Given a contour tree, possibly with metric information, we create a
terrain that we call topological landscape with the same topology as
the original data. This process can be thought of as the inverse opera-
tion of the classical construction of a contour tree from a scalar field.
In this projection from the topology to a terrain we preserve function
values, persistence and nesting of critical points, as well as an addi-
tional metric property attached to each arc that we map to the areas of
the corresponding regions

This new visual metaphor takes advantage of the fact that humans
are naturally trained and very effective in understanding the structure
of a terrain. Furthermore, one can combine topological information
with additional properties at the level of individual components, some-
thing not easily achieved in a graph model. In fact, Carr et al. [14, 17]
compute the metric information at the level of individual components,
simplify the tree based on this individual information, yet still present
it to the user clustered in a spectrum-like interface [7]. The structure of
terrains, on the other hand, is easy to grasp and has long been used to
illustrate topological concepts. In this paper we show how to harness
this intuition to illustrate the behavior of general scalar functions.

Naturally, topological landscapes are not meant to replace the de-
tailed representation of direct rendering methods, other histograms, or
more advanced graph models. We believe, instead, that their ability
to provide a complete and yet intuitive overview of the data fills an
important gap in data exploration process and constitutes a valuable
addition to an advanced used interface. In particular, the main contri-
butions of this work include: (i) Introducing the concept of topological
landscapes as a new metaphor for presenting the structure of a given
scalar function f ; (ii) Providing a method to construct a terrain whose
contour tree is identical to that of f ; (iii) Demonstrating how an adap-
tive refinement of the terrain based solely on 4-8 subdivision rules re-
produces a correct topological approximation of f ; (iv) Re-balancing
contour trees to reduce their height; (v) Providing a multi-scale method
for optimizing the mesh such that the area of each feature in the topo-
logical landscape is approximately proportional to the desired metric
property; and (vi) Presenting examples that demonstrate the expressive
power of topological landscapes.



2 RELATED WORK

Even though topological methods have been used by the graphics and
visualization community for more than fifteen years [19, 20] and were
developed much earlier [21, 22, 23] few techniques aim to improve
the presentation of topological information. Some topological struc-
tures, such as the Morse-Smale complex and the topological segmenta-
tions of vector fields, have natural embeddings [24, 25, 26, 27]. How-
ever, they are difficult to compute and in three dimensions (3D) suffer
from significant occlusion problems. In scalar field visualization the
most widely used topological structure is the contour tree [10, 12],
which is an abstract graph without inherent embedding. Pascucci et
al. [17] proposed the toporrery to layout and render hierarchical con-
tour trees. The toporrery improves rendering times and overall layout
significantly, yet the contour tree remains an abstract graph that is dif-
ficult to comprehend. Mizuta et al. [28] represent the nesting structure
of a contour tree using a color image of nested rectangles. This method
is effective at representing the nesting of features, yet gives no indica-
tion of the function values involved and/or the size and importance of
the features.

A more common approach to using structural information in vi-
sualization is to enhance standard techniques such as isosurfaces and
volume rendering [1, 2] with, for example, topological information.
Fujishiro et al. [29] rendered translucent isosurfaces representing all
possible isosurface topologies and used the result to automate transfer
function design [30]. Similar approaches that use topological infor-
mation to quickly find regions of interested have been proposed by
Pascucci and Cole-McLaughlin [11] and Weber at al. [16]. Takahashi
et al. [31] proposed using topology based interval volumes to explore
datasets.

Another set of methods expose structural information more directly
to the user, either in form of histograms or as abstract graphs. Ba-
jaj et al. [7] introduced the contour spectrum, which aids users in the
selection of appropriate isovalues by providing a histogram showing
isosurface properties, such as area and enclosed volume as a function
of the isovalue. Kettner et al. [32] extended this interface to higher
dimensions and further considered properties, such as number of con-
tours that are not decomposable. Carr et al. [14, 33] computed similar
properties, but do so on a per contour bases. The results are used to
guide the simplification of the contour tree, which in turn is used to
simplify isosurfaces and provide a more flexible, contour centric inter-
face.

Topological landscapes can been seen as a more powerful version of
such interfaces that map topological properties of higher-dimensional
datasets to topological properties of two-dimensional terrains [34, 35,
36]. Rather than showing the abstract contour tree (albeit simplified by
geometric measures) as proposed by Carr et al. [14] or showing only
metric properties like Bajaj et al. [7] topological landscapes combine
this information into single intuitive interface.

To reflect a metric property, e.g., the enclosed volume, in the topo-
logical landscape we adapt the initial terrain, see Section 4.1, such that
the areas of a feature become proportional to the enclosed volume of
their corresponding isosurfaces, see Section 4.3. This is related to the
construction of continuous cartograms [37, 38, 39] where the goal is
to adjust the layout of a given map according to a set of weights with
minimal shape distortion. Depending on additional constraints, such
as shape or neighborhood preservation, there exist different flavors of
the problem and we refer the reader to the paper by Keim et al. [38]
for complete definitions and a list of additional references. In general,
solutions are based on formulating a non-linear energy function that
incorporates the shape and weight error and optimizing this energy.
House and Kocmoud [37] used a large spring system for optimization
that produces good results but is computationally expensive. Keim et
al. [38] divided their entire map into sections between a set of scan-
lines and scaled each section either along or perpendicular of each
scanline. The restriction to small localized updates makes this algo-
rithm comparatively fast. However, the quality is strongly dependent
on the placement of the scanlines and the best results are achieved with
manual placement. Finally, Heilmann et al. [39] reduced the dimen-
sionality of the problem by restricting all regions to be rectangular.
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Fig. 1. The number of contours of an isosurface changes as the iso-
value is swept thought the function range: After hitting a minimum, one
contour is created (a). A new contour inside the existing contour is cre-
ated around a second minimum. For a higher value, these two contours
merge into a single contour (c). As the isovalues increases, this contour
splits in two independent contours (d), which in turn both split (e), (f)
until there are four contours. As the isovalue is further increased, these
four contours are destroyed. We do not track genus changes that occur
between split events, e.g., the hole forming in the upper component (d),
(e). (Dataset courtesy of Hamish Carr, University College Dublin.)

The resulting reduced problem is solved using genetic programming.
While all these solutions are related, and in particular the RecMap

approach seems applicable (since all our initial regions are squares),
there exist important details that make them impractical in our case.
To preserve contour tree topology, our neighborhood constraints are
absolute. As shown in Section 4, the initial layout is carefully chosen
to preserve topology and two regions changing neighborhood status
(either becoming neighbors or no longer being neighbors) is likely to
change topology. Second, our regions are defined hierarchically and
therefore even more inter-dependent than in the standard cartography
problem. Finally, we aim to preserve the initial triangulation (to ensure
fast rendering) without fold-overs or T-junctions. This adds a large
number of additional constraints to the interior of each region that do
not exist in the case of traditional continuous cartographs.

Instead, we use a multi-scale approach similar to the graph drawing
techniques developed by Harel and others [40, 41, 42]. Their method
creates a graph layout by first coarsening a graph, solving the lay-
out for the simplified graph and then progressively re-refiniing and
re-optimizing the layout at each resolution level. As discussed in Sec-
tion 4.3, our problem is particularly suited for such a multi-scale ap-
proach since our constraints as well as the mesh are by construction
organized hierarchically. Furthermore, for each atomic step one can
calculate the optimal position of a vertex making complicated energy
minimizations unnecessary.

To represent a topological landscape we are using an adaptive 4-
8 mesh [43, 44, 45]. In particular, we chose SOAR [45], because its
simplification metrics are compatible with persistence, its recursive re-
finement scheme implies a recursive method for translating the branch
decomposition into a terrain, and its simplicity.

3 BACKGROUND

In this section we define contour trees, show how they are simplified,
and discuss branch decompositions as one method of representing con-
tour trees. For a more detailed discussion of the underlying theory we
refer the reader to [23].

Let M be a manifold with boundary and f : M→R a scalar function
on M. One of the fundamental techniques to understand the behavior
of f is to extract its isosurfaces, see Figure 1. Given an isovalue v the
isosurface of f at v is defined as the pre-image of v on M: f−1(v).
The connected components of an isosurface are called contours. The
contour tree of f is the graph obtained by continuously contracting
every contour of f into a point, see Figure 2(a). Contour trees encode
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Fig. 2. The contour tree describing the evolution of contours in Figure 1
(a) and its multi-resolution representation as branch decomposition (b):
(a) Two nodes at the bottom represent the two minima around which
the initial two surface components (Figure 1 (a) and (b)) are created.
The four degree three nodes represent the merge and split events of
Figures 1 (c), (d), (e) and (f). The four nodes at the top correspond to
the maxima, where the four contours of Figure 1 (f) are destroyed. (b)
The branch decomposition is a multi-resolution representation of that
same contour tree. It is obtained by selecting a root branch connect-
ing maximum-minimum pair of the contour tree that maximizes a met-
ric (here persistence). Branches connecting an extremum (degree one
nodes) to a saddle (degree three and higher nodes) are added in an or-
der based on some importance measure (here persistence). The further
down a branch is located in the parent-child hierarchy, the less important
its contribution to the topological description of the dataset is deemed.

the evolution of contours as the isovalue is swept through the range
of f . Bottom leaf nodes of the contour tree correspond to minima
of f (where contours are created), internal nodes to saddles (where
contours merge or split), and top leaves correspond to maxima (where
contours disappear). Because of this relation between the contour tree
and the global structure of the isosurfaces of f , contour trees have been
used extensively in visualization.

The contour tree of a complicated and/or noisy function can be-
come too large to be studied (or even displayed) directly [14, 17]. A
contour tree is simplified by successively removing leaves and their
corresponding branches, which is equivalent to a cancellation [24] of
the two critical points corresponding to the end points of the deleted
branch. Another view is that a cancellation represents removing the
mountain top (or filling in the valley) that the leaf symbolizes. To
rank cancellations, different metrics are suitable. We choose persis-
tence [46]—the absolute difference in function value spanned by a
branch—since it corresponds to topological simplification. This cor-
respondence is crucial in creating a landscape whose topology reflects
that of a given contour tree.

We also use the sequence of simplifications to build a branch de-
composition [17] of the contour tree, see 2(b). Each time a branch B0
attached to a branch B1 is canceled we say that B1 is a parent of B0
and B0 is a child of B1. This process provides us with a hierarchical
representation of a contour tree that can be directly translated into a
SOAR mesh hierarchy.

4 ALGORITHM

Given a scalar function f , we first extract its contour tree using any
of the standard techniques [12, 11] and construct its branch decompo-
sition [17]. Following the hierarchy of the branch decomposition, we
recursively create a terrain with the same topological structure as f .

4.1 Terrain construction

Starting with the root, each branch is mapped to a region of the terrain,
which is subsequently refined to provide space for all children of the
branch. This process is applied recursively to each child branch result-
ing in the final terrain. Each branch creates either a peak (for a maxi-
mum) or a valley (for a minimum) surrounded by a ring of vertices at

the function value of the saddle. The ring ensures that the saddles of
the terrain have the same value as their corresponding saddles of f .

Initially, the root branch is modeled as a single peak, see Fig-
ure 3(a). The vertex at the center (marked red) represents the maxi-
mum and the ring of vertices comprising the boundary (marked blue)
represents the minimum of the root branch. While one level of the
SOAR hierarchy could be used to represent this peak, we use two lev-
els to simplify the recursive construction. If the root branch has no
children the terrain is complete. Otherwise, we refine the mesh to
create sufficient space to fit the same 3-by-3 vertex configuration for
each child. As shown in Figure 3(b), three additional refinement steps
create sufficient space to place four children. However, regions share
vertices (marked yellow) which interferes with assigning appropriate
function values (see below). Therefore, we refine one more level, see
Figure 3(c) creating space for four isolated child branches. If more
than four children must be placed, we further subdivide the mesh two
levels at a time, quadrupling the number of available spots each time,
see Figure 3(d).

Assignment of child branches to the available spots depends on the
function values of their nodes. Each branch (except for the root) con-
nects an extremum to a saddle. We assign the function value of the ex-
tremum to the center vertex of the corresponding region and the func-
tion value of the saddle to the eight remaining vertices. This scheme
automatically creates peaks for maxima and valleys for minima. Chil-
dren are sorted according to the function value of their saddles and
placed in decreasing order in a spiral layout, see Figure 3(e). Finally,
all vertices between children except the center and boundary of the
parent are assigned the average function value of their neighbors. We
apply this scheme recursively until all branches of the contour tree
have been placed.

As children are refined, vertices may need to be added to their par-
ent region to avoid T-junctions. We determine these additional vertices
by temporarily considering a mesh uniformly subdivided to its highest
resolution (as required to place recursively all branches of the hierar-
chy) and using the SOAR algorithm to determine the fewest number
of vertices that must be added to create a consistent mesh. Note that
for two neighboring child branches with the same saddle value special
care must be taken to avoid under-refining the mesh. Conceptually,
all new vertices are the result of an edge bi-section and we use linear
interpolation along this edge to assign their function values.

This hierarchical construction scheme ensures that the isolines at
the level of the parent-saddle enclose all isolines of its children. There-
fore, the nesting structure of all isolines in the terrain is identical to
that of f ’s isosurfaces. Furthermore, the layout guarantees that there
are no extraneous extrema since all vertices not specifically designed
as critical points have at least one higher and one lower neighbor. It
follows that there exist no extraneous saddles and the contour tree of
the terrain is identical to that of f .

The topological landscape not only preserves the topological struc-
ture of f but the function values are carefully chosen to also preserve
the persistence of the features. Finally, by mapping the hierarchical
branch decomposition directly to the SOAR hierarchy one can perform
a correct topological simplification of the landscape by simply render-
ing a coarser mesh. As the center vertex of each branch is removed,
the branch is rendered as a flat region at the height of the saddle. This
corresponds to removing a mountain top or filling in a valley canceling
the feature.

4.2 Contour tree re-balancing for better space utilization
Using a recursive terrain construction scheme exposes a problem of
the branch decomposition that is less obvious in graph-based repre-
sentations, such as the toporrery. A branch decomposition often re-
sults in a very “deep” tree with many hierarchy levels. While some of
these levels are a result of contour nesting properties, the use of sym-
bolic perturbation and subsequent simplification based on persistence
can contribute significantly to the depth of the hierarchy. To alleviate
this problem we employ a recursive branch re-balancing step. Starting
with one hierarchy level above the leaves we check if the saddle value
of a child node is close to the saddle value of its parent branch. All
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Fig. 3. Constructing a terrain from the branch decomposition compatible with the SOAR hierarchy. (a) The root branch is mapped to a SOAR
hierarchy consisting of two levels with the maximum at the center and the minimum at the boundary of the terrain. The resulting mesh is refined
further to create space for placing the children of the current branch. Adding three levels of refinement (b) adds sufficient space to place the
extrema. However, locations for the saddles of a branch are ambiguous, as indicated by the yellow vertices shared between two children. Adding
four levels of extra refinement (c) creates sufficient space for placing four child branches (highlighted gray in the image) and leaving a “buffer” zone
between them. Furthermore, regions for placing the child branches are identical to the set-up for the initial branch. The vertex corresponding to the
extremum (marked red/blue) is surrounded by eight vertices linked to the saddle (marked green). (d) Every two levels of extra refinement quadruple
the number of available spots for children. (e) Children are placed in order of deceasing saddle value in a spiral layout.

(a) (b)

Fig. 4. To achieve better space utilization in the recursive terrain gener-
ation scheme, we re-balance the branch decomposition. Child branches
whose saddles are close (in function value) to that of its parent become
its siblings. This reduces the depth of the hierarchy and in particular
removes artifacts due to symbolic perturbation. The image shows the
branch decomposition of the nucleon dataset in toporrery layout (a) and
the re-balanced branch decomposition, where all branches with zero
persistence are moved to their parent branch (b).

children whose saddle value is within a user-specified threshold be-
come siblings of their parent (i.e., are moved up one hierarchy level).
Subsequently, this process is continued for the next higher hierarchy
levels until the root branch is reached. Potentially, a child branch can
move up several levels in the hierarchy, if saddle values are very close.
Figure 4 illustrates the effect of removing artifacts due to symbolic
perturbation. All children with identical saddle values as their par-
ent branch are moved up in the hierarchy. Clearly, the topological
structure becomes much more obvious. While this approach is par-
ticularly useful for removing symbolic perturbation artifacts, higher
re-balancing thresholds can be appropriate for some datasets. How-
ever, the resulting branch decomposition no longer reflects the exact
nesting properties of contours.

4.3 Metric-based distortion
The previous sections describe how to create a terrain whose topol-
ogy reflects that of a given contour tree. Furthermore, the persistence
metric is preserved by choosing appropriate height values. Neverthe-
less, there exists a perceptual problem, namely that the area (in the
xy-plane) corresponding to a branch only depends on its level in the
hierarchy. This can result in small patches with high persistence cre-
ating thin spikes in the terrain. Not only can such features be difficult
to see, but they are traditionally associated with being noise or out-
liers. In this context, however, this association might be misleading as
the hierarchy level, in general, is not necessarily related to the signif-
icance of a topological feature (especially when considering relative

(a) (b) (c)

Fig. 5. Constructing a terrain (b) form a branch decomposition (a) of
the model shown in Fig. 1 and distributing volumes associated with the
branches (c). Given a root branch (gray) the volume of its children is as-
signed to their respective patches (see Section4.1) and its own volume
to the surrounding region. This scheme is followed recursively within
each sub-tree. (c) Final terrain after adjusting areas according to the
given volumes.

significance between branches on the same level).
To alleviate this problem and to further increase the expressive

power of topological landscapes we treat the area assigned to a branch
as an additional variable to be optimized. This allows us to preserve
not only topology and persistence, but also another metric property
chosen by the user. In our examples, we use the volume associated
with a branch, as this is another well studied metric to decide the sig-
nificance of a contour [14]. As discussed above, each branch of a
contour tree corresponds to a single contour being swept through the
volume. Integrating the area of the contour through its life time re-
sults in the volume we associate with the corresponding contour tree
branch. We approximate this volume by the number of vertices passed
over by the contour. The volume is distributed to the terrain as shown
in Figure 5(b).

Each branch is assigned a square patch. Wihtin this patch, the vol-
ume of its children is assigned to their respective sub-patches and the
volume of the root branch of this (sub-)tree to the triangles covering
the remaining area. There are two important details for practical appli-
cation: First, within a given patch the volume is distributed according
to the initial area of each triangle. The original triangle area is tied into
the valences of surrounding vertices and observing the local area ra-
tios prevents problems in the later optimization. Second, instead of the
original volume V we distribute V 2/n, where n is the dimension of the
function domain. This compensates for the well known perceptual dif-
ference in judging relative areas compared to relative (hyper-)volumes.

Once the volume has been distributed, we create a standard quad-
mesh hierarchy in which leaf nodes correspond to triangles (or
triangle-halves) and are assigned the corresponding volume. Internal
nodes are assigned the sum of the volume of all their children, see Fig-
ure 6(a). Subsequently, we iteratively adapt vertex positions (but not



Fig. 6. (a) Adaptive mesh with volumes assigned to its triangles; (b) The mesh of (a) after the optimization of level one and two vertices with the
colors indicating the appropriate quad-tree cells and their associated target volumes; (c) The mesh of (b) after the nodes on level three and four
have been introduced as the mid points of their respective edges. Note, that not all boundaries between quadtree cells are edges in the mesh; (d)
The final mesh after optimization; (e) Prototypical vertex neighborhood for vertices on even (dotted) and odd levels (dashed).

Let T L = (V,T ) be a topological landscape
lvl = 1;
stepSize = 0.25;
epsilon = convergence threshold;
while lvl < MAXLEVEL(T L)

delta = 2*epsilon;
while delta > epsilon
forall i in {0,1}
forall v in VERTICESONLEVELS(T L,{lvl + i})

optimal[v] = GETOPTIMALPOSITION(v);
forall v in VERTICESONLEVELS(T L,{lvl + i})

v = STEPTOWARDS(optimal[v],stepSize);
delta = MAXSTEPLENGTH(optimal);

endwhile
forall v in VERTICESONLEVELS(T L,{lvl +2, lvl +3})

v = AFFINEPROJECTION(v);
lvl = lvl + 2;

endwhile

Fig. 7. Pseudo-code to adjust the area rations of a topological land-
scape to the metric properties of its branches.

the connectivity) in a coarse-to-fine manner aiming to achieve area ra-
tios corresponding to the given volumes. Figure 7 shows the complete
algorithm as pseudo-code using the nomenclature of Figure 6(a). In
particular, we assume all vertices of the terrain to be assigned levels
according to the SOAR hierarchy.

We adapt the mesh two hierarchy levels at a time considering only
vertices of the current level or coarser. Each vertex independently
computes its optimal position (see below), and then all vertices on
a given level take a step towards their optimal position. Steps are con-
strained to maintain the current triangulation considering only vertices
on their own level or above. Once optimization has converged for a
given level, we lift the vertices of the next two finer levels to their
appropriate affine position, placing them at the midpoints of the ap-
propriate edges (given by the SOAR hierarchy). Figure 6(a)-(d) show
an example of an adaptive mesh being optimized by our algorithm.
While we have no formal proof of convergence, the algorithm quickly
converged in all our tests using a step size of 0.25.

To compute the optimal position of a vertex, we consider it as the
center of four quad-tree cells, each with its target volume attached.
There exist two cases: moving vertices on even or on odd levels as
their connectivity differs, see Figure 6(e). In the following we derive
the formula for odd levels following the nomenclature of Figure 6(e).
First, we re-scale the volumes corresponding to the four quadrants
A0−A3 by the sum of their current areas to obtain the target areas
t0− t3 we aim for. The area of, for example, the left upper quadrant
can be calculated as.

2∗area0 = (p1x− x)∗ (p0y− y)− (p1y− y)∗ (p0x− x)
+(p0x− x)∗ (p3y− y)− (p0x− x)∗ (p3y− y)

= 2a0x+2b0y+2c0 .

With the corresponding calculations for the other three quadrants the

squared area defect with respect to p4 = (x,y) is given by

areaDefect(x,y)2 =
3

∑
i=0

(aix+biy+ ci− ti)2.

Finally, we solve for ∇areaDefect(x,y)2 = (0,0) to find the optimal
position of the center vertex. We found stepping toward the optimal
solution to perform significantly better than the more traditional step
in gradient direction. Two special cases exist: boundary vertices, and
vertices for which p1, p3, p5, and/or p7 do not exist. In the former case,
optimization only considers those quadrants that are part of the mesh.
In the later case, missing vertices are assumed to lie at the midpoint
of their respective edges. Note that the optimal position of a boundary
vertex always lies on the boundary as well. Therefore, optimization
preserves the quadratic foot-print of the terrain. Figure 5(c) shows the
resulting terrain for the example dataset of Figure 1.

Since we do not change connectivity, the optimized mesh can still
be rendered using the SOAR algorithm. Nevertheless, for high qual-
ity rendering one must also guarantee that locally coarsening the mesh
does not create inverted normals: Assume that an adaptively refined
mesh contains a triangle with an inverted normal. Within this trian-
gle consider the vertex on the highest SOAR level. The connectivity
of this vertex is identical to that seen during its optimization. Since
at the optimization stage triangles were explicitly maintained to pre-
serve their orientation, this is a contradiction. If adaptive rendering is
unimportant, we add an additional smoothing stage, aiming to improve
triangle quality within each patch while maintaining patch boundaries.

We measure our error per branch as the difference in percent be-
tween final area and target area. The maximal error of a single branch
in all examples is 8.8% for the engine dataset and the largest average
error (error weighted by size of the area) is 1.4% for the hydrogen
atom dataset.

4.4 Discussion
The algorithm described above constructs a topological landscape for
any given contour tree. We can illustrate any scalar function defined
on a simply connected domain using this new metaphor. In particu-
lar, contour trees can be computed from n-dimensional functions [12],
allowing us to illustrate topology of functions of arbitrary dimension.
However, the main source of datasets with dimension larger than three
are time-dependent fields, which require special treatment. While it is
possible to treat a three-dimensional time-dependent function as being
four-dimensional, current experience suggests that results are difficult
to understand and that constructing a time series of three-dimensional
fields is more advisable. Constructing animated landscapes to handle
these cases will be one focus of future research. A limitation of our ap-
proach is that the topological landscape of a two-dimensional function
(i.e. a terrain), in general, will look very different from the original.
However, since terrain topology is readily apparent in standard render-
ings we find this to be a small limitation.

As with many non-linear and iterative optimization schemes the run
time complexity is data and parameter dependent. Therefore, we can-
not provide a formal bound on the overall complexity and using unfa-



Fig. 8. Hydrogen atom datasets with average volume-to-area projection
error of 1.1%. (Left) The topological landscape showing, in addition to
the main mountain, four structures of large area. Two have high persis-
tence (red, green), one has medium persistence (blue) and one is nearly
flat (yellow). (Right) Volume rendering using a similar color scheme to
increase correlation between the two views.

vorable parameters (e.g., an overly large step-size) the algorithm might
not converge. Memory requirements depend hierarchy depth and cor-
responding SOAR mesh resolution. Currently, our implementation is
not optimized and requires a temporary mesh of uniform resolution.
We are working on an optimized implementation that eliminates this
constraint.

5 RESULTS

We have tested our technique on a set of classical datasets widely
used by the visualization community. In general, we believe that the
metaphor proposed here constitutes a good complement to classical
techniques such as volume rendering or isocontouring. The topolog-
ical landscape provides an overview of the structures present in the
data showing their relationships in terms of function value, topologi-
cal nesting, persistence, and amount of space occupied.

We stress that this concept is meant to be a complement to existing
approaches since important properties, such as the distance between
features, are obviously lost in the projection from the 3D volume to
the terrain.

Below, we show a series of examples and comment on our percep-
tual experience with them. Naturally, this is just anecdotal evidence
and by no means a substitute for a rigorous user study. For example,
during development we arrived several times at the conclusion that a
topological landscape was incorrect, probably due to an implementa-
tion error. Only after further exploration of the data we realized that
our intuition regarding the overall structure of the dataset was inac-
curate. The topological landscape was in fact correcting our miscon-
ception about the data. Overall, our initial practical experience has
reinforced our belief that this new metaphor can be an effective addi-
tion to the general toolbox of scientific visualization components.

In all the examples below we have re-balanced the contour tree as
described in the previous section to avoid nesting artifacts in the pre-
sentation and filtered low persistence topological noise. In all images
we assign a different color to each hill and valley to visually sepa-
rate features. The main mountain, not necessarily ranging from global
minimum to global maximum, is presented in a semi-transparent gray
to facilitate the visualization of deep valleys and its center is marked
by a flag. In general, this metaphor has a bias in favor of maxima since
the minima may be hidden at the bottom of a valley. In cases where
this may be a problem, we provide a secondary view using the same
main mountain but with nested hills and valleys flipped for visual in-
spection, see Figure 12. We note that this not the same as providing a
completely inverted contour tree, but having an identical main moun-
tain makes it easier to correlate information between two landscapes.
For each dataset we report the average error that we commit when
projecting the volume of a region onto the corresponding area in the
topological landscape.

Our first example is the hydrogen atom dataset (data downloaded
from http://www.volvis.org/). Figure 8 shows the topo-
logical landscape together with a volume rendered image of the

Fig. 9. Methane dataset: with average volume-to-area projection error
of 1.5%. (Left) Topological landscape. (Right) Volume rendering using
the same color scheme.

Fig. 10. Engine dataset with average volume-to-area projection error of
1.3%. (Left) Topological landscape. (Right) Volume rendering using the
same color scheme.

data, assigning different transfer functions to separate topological fea-
tures [47]. Notice how the landscape helps appreciate the fact that
the two lobes in the hydrogen orbital (red, green) have larger func-
tion range than the toroidal ring in the middle (blue), although the ring
takes a larger volume. One can also clearly see a large region at nearly
zero persistence (yellow), which is probably an artifact from the con-
struction process. In the past we completely missed this region due to
its low function value even though it occupies a large portion of the
volume. This is one case where we initially thought the landscape to
be incorrect, while instead our standard exploration had simply missed
this feature. A more important insight has been the size of the toroidal
ring. From the 3D images it is not easy to realize that the ring becomes
larger than the two lobes before merging with the rest of the volume.
The explanation is that it merges from its interior and it is therefore
difficult to capture this event using a 3D view. In the topological land-
scape we clearly see that the ring becomes larger than the two lobes
before the actual merge event occurs.

The next example is the methane dataset shown again as topologi-
cal landscape together with a volume rendering using a similar color
scheme (see Figure 9). In this case it is interesting to see how the
landscape immediately clarifies, which feature is built around a min-
imum/maximum, something not evident from the volume rendering.
In particular, the main feature related to the carbon atom is associated
with a large minimum, while each hydrogen atom is associated with
two maxima. Clearly, the combination of these two images, even with-
out interactive exploration, provides a better explanation than either of
them independently.

Figures 10 and 11 show similar illustrations for the engine and nu-
cleon datasets. In both cases considerations similar to those for the
hydrogen atom and methane data sets apply. The topological land-
scape immediately relates which regions are associated with maxima
and minima and their persistence. Moreover, one understands better,
which features take a large portion of the volume even though the 3D
rendering does not contain that information explicitly due to occlusion.

The last three examples are the silicium (Figure 12), neghip (Fig-
ure 13) and fuel (Figure 14) datasets. In these cases, we show topo-
logical landscapes together with a more traditional volume rendering
using a global transfer function. This leads to a reduced correlation be-
tween the two visualizations and therefore hampers the benefit of the



Fig. 11. Nucleon dataset with average volume-to-area projection error
of 0.6%. (Left) Topological landscape. (Right) Volume rendering using
the same color scheme

Fig. 12. Silicium dataset with average volume-to-area projection error of
1.0%. (Top left) Topological landscape. (Bottom left) Flipped landscape.
(Right) traditional volume rendering.

Fig. 13. Neghip dataset with average volume-to-area projection error of
1.9%.

simultaneous presentation. Nevertheless, one can derive information
that would not be obvious otherwise. In the case of the silicium data
set, for example, one notices that the structures forming the lattice of
the crystal are a set of maxima and minima all of similar persistence
and all occupying similar volumes. This is easy to see in the topo-
logical landscape and its flipped counterpart. The volume rendering
complements this information with a sense of the geometric shape of
the actual crystal. For the neghip dataset the topological landscape
reveals that many features that are small in terms of volume but span
a large function range. Their geometric distribution is highlighted by
the volume rendering.

In general, we find that this new metaphor has the potential to
greatly improve the effectiveness of classical visualizations, such as
volume rendering or isocontouring, since it conveys complementary
information increasing the ability of users to fully understand the inner
structure of the data with much less exploration. Furthermore, we be-
lieve that this would be very effective in static illustrations where any
information about the global structure of the data becomes extremely
valuable.

Fig. 14. Fuel dataset with average volume-to-area projection error of
4.1%.

6 CONCLUSIONS AND FUTURE WORK

We have introduced topological landscapes as a new metaphor to
present topological information. Starting from a scalar function f we
show how to project f to a terrain preserving the topological structure,
function values, and persistence, as well as the volume associated with
each feature. Furthermore, the landscape is encoded as a hierarchical
mesh which can be efficiently rendered and whose hierarchy corre-
sponds to the persistence based simplification of f . Overall, topo-
logical landscapes, though currently limited to scalar functions that
have an associated contour tree, i.e., which are defined on a simply
connected domain, provide a powerful new interface to complement
existing techniques.

Going forward, we are experimenting with metrics [48, 49, 14] be-
side the enclosed volume to further increase the flexibility of topolog-
ical landscapes. Furthermore, we are investigating different layouts
to reduce the amount of “empty” space and are considering chang-
ing the volume assignment within each branch to reflect the volume
above/below its highest/lowest saddle in separate regions.

We further plan to explore linking multiple representations of a
dataset, such as contour tree display, a topological landscape and a
volume rendered image and/or an isosurface display. This combina-
tion should be very effective when exploring the structure of a dataset.
Adding the ability to extract contour/height lines on a topological land-
scape, along with linking this contour with the corresponding isosur-
face of the volumetric dataset will facilitate the ability to detect higher
level topological features.
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