
1

Parallel Dataflow Scheme for Streaming

(Un)Structured Data

Huy T. Vo, Daniel K. Osmari, Brian Summa, João L.D. Comba, Valerio Pascucci and
Cláudio T. Silva

UUSCI-2009-004

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

May 27, 2009

Abstract:

We propose new techniques for exploiting multi-core architectures in the context of visualization
dataflow systems. Recent hardware advancements have greatly increased the level of parallelism
available in these architectures, and it is expected that this trend is likely to continue in the
future. Existing dataflow systems have a number of limitations: they are written for a standard
CPU programming; they mostly support a limited type of multi-threading execution; and while
some systems (e.g., ParaView, VisIt) include streaming and tiling methods for parallelism, due
to the monolithic data and computation model, they are not optimally suited for the higher
levels of parallelism available in highly parallel architectures of the future. Ideally, visualization
systems should be built on top of a parallel dataflow scheme that is able to better utilize CPUs
and assign resources adaptively to pipeline elements. Another important goal is to natively
supporting streaming data structures. We propose the design of a flexible dataflow architecture
aimed at addressing many of the shortcomings of existing systems, including a unified execution
model of both demand-driven and event-driven; a resource scheduler, that can automatically
make decisions on how to allocate computing resources; support for more general streaming data
structures, including unstructured elements. We have implemented our system on top of VTK,
and we provide backward compatibility and in this paper, we provide experimental evidence of
performance improvements on a number of application.



Parallel Dataflow Scheme for Streaming (Un)Structured Data

Huy T. Vo, Daniel K. Osmari, Brian Summa, João L.D. Comba, Valerio Pascucci and Cláudio T. Silva

Module

Message

Data Dependency

Executive

Our Uni�ed Model

E
New Event

E

E

E E

E

Data Request

Fig. 1. Left: Our new unified data-flow model with a new control strategy. Right:Comparison of a progressive rendering pipeline executed in VTK
using the default execution model (top) and ours (bottom). The progressive renderer increases the level of detail from left to right. We have achieved
approximately 3 times speed-up on a 4-core machine. The same pipeline running in our system were able to finish the rendering at the finest level
5 while the VTK one only reaches the level 2.

Abstract—
We propose new techniques for exploiting multi-core architectures in the context of visualization dataflow systems. Recent hardware
advancements have greatly increased the level of parallelism available in these architectures, and it is expected that this trend is likely
to continue in the future. Existing dataflow systems have a number of limitations: they are written for a standard CPU programming;
they mostly support a limited type of multi-threading execution; and while some systems (e.g., ParaView, VisIt) include streaming and
tiling methods for parallelism, due to the monolithic data and computation model, they are not optimally suited for the higher levels
of parallelism available in highly parallel architectures of the future. Ideally, visualization systems should be built on top of a parallel
dataflow scheme that is able to better utilize CPUs and assign resources adaptively to pipeline elements. Another important goal is
to natively supporting streaming data structures. We propose the design of a flexible dataflow architecture aimed at addressing many
of the shortcomings of existing systems, including a unified execution model of both demand-driven and event-driven; a resource
scheduler, that can automatically make decisions on how to allocate computing resources; support for more general streaming data
structures, including unstructured elements. We have implemented our system on top of VTK, and we provide backward compatibility
and in this paper, we provide experimental evidence of performance improvements on a number of application.

Index Terms—Dataflow architectures, Streaming data structures, Parallel processing.

F

1 INTRODUCTION

The dataflow model is widely-used in visualizations systems, includ-
ing AVS [26], SCIRun [19], and VTK-based systems such as Par-
aview [14], VisIt [8] and VisTrails [5]. Existing dataflow architec-
tures have been designed primarily to work on either a single CPU or
a small collection of CPUs, such as a small SMP workstation. Recent
hardware advancements have greatly increased the level of parallelism
available in these architectures, and it is expected that this trend is
likely to continue in the future. Equally important is that to a large
extent, existing architectures assumes that all the data structures are
maintained in memory, and that potentially multiple copies of the data
might be stored as it is processed by the different dataflow modules.
Most, if not all designs, have completely ignored streaming data struc-
tures, which sometimes are supported for simple data types (e.g., regu-
lar 2-D images or regular 3-D volumes). The support for unstructured
and hierarchical data structures is either non-existent or fairly naive.

We propose the design of a flexible dataflow scheme aimed at ad-
dressing many of the shortcomings of existing systems. Our system

• Huy T. Vo, Brian Summa, Valerio Pascucci and Cláudio T. Silva are with
the Scientific Computing and Imaging Institute, University of Utah. USA,
E-mail: [hvo,bsumma,pascucci,csilva]@sci.utah.edu

• Daniel K. Osmari and João L.D. Comba are with the Instituto de
Informática, UFRGS, Brazil, E-mail: [dkosmari,comba]@inf.ufrgs.br

supports a unified execution model of both demand-driven and event-
driven that allows each module in our pipeline to pull as well as push
data. It also includes a resource scheduler, that can automatically make
decisions on how to allocate computing resources (e.g, the number of
threads to use for a particular module). Another novel feature is the
support for more general streaming data structures, including support
for unstructured elements (e.g., tetrahedral elements), and the fact that
we use streaming not only as a way to decreasing memory overhead,
but also as a way to obtain extra performance. We have implemented
our system on top of VTK, and we provide backward compatibility.
This facilitates integration into the many systems that support VTK.

Contributions of our flexible parallel dataflow framework:

• A new scheme for executing pipelines that easily exploits multi-
core hardware.

• A unified data-flow model that easily integrates pull (demand-
driven) and push (event-driven) policies into a single pipeline.

• A data-flow control strategy that combines the benefits of both
the distributed and centralized execution controls.

• A system that includes new support for streaming structured and
unstructured data.

• An new adaptive scheduling strategy for dynamic load balancing.



• A complete multi-core implementation and seamless integration
into a widely-used visualization system.

2 RELATED WORK

Parallel rendering on a variety of architectures has been the focus of
a large body of work [4, 17, 22, 25]. Even a cursory review is be-
yond the scope of this paper, therefore we point the reader to [7] for
a complete introductory survey. For this paper, we focus our dis-
cussion on visualization dataflow systems. Following the pioneering
work of Haber and McNabb [10], many leading visualization systems
(e.g., [1, 5, 8, 15, 19, 26]) have been based on the notion of a dataflow
network, where nodes (often called modules) are processing elements
and arcs represent data dependencies. Several different methods have
been developed for implementing this framework; for instance, a typi-
cal technique is to implement the system as a demand-driven workflow
where modules respond to update requests. Following a request mod-
ules perform their computations and pass the processed data down-
stream until it reaches the display modules [9].

This component framework methodology for developing visualization
libraries encourages code reuse, while enabling the development of ex-
tremely flexible and powerful visualization systems. As an example,
consider the de-facto standard visualization API, Kitware’s Visualiza-
tion ToolKit (VTK) [15]. VTK is a highly successful visualization
system used by thousands of researchers and developers around the
world. VTK was originally developed as teaching software as part of
collaboration among three GE researchers, but it quickly grew in func-
tionality and complexity. The underlying architecture has undergone
substantial modifications over the years to allow for the handling of
larger and more complex datasets (e.g., time-varying, AMR, unstruc-
tured, high-order).

VTK’s execution model has a number of limitations with respect to
parallelism. First, it only supports concurrency execution at a module
level, which means that no matter how many threads an algorithm is
implemented to run in, the whole network has to be updated serially
(that is, one module at a time). Moreover, by default, only a small sub-
set of VTK, such as those inherited from vtkThreadedImageAlgorithm,
can run multi-threaded. This poses a limitation on the performance
and scalability for many applications. While much effort [6, 16] has
been put into extending VTK’s execution pipeline over the years, it is
still challenging and problematic to build highly-parallel pipelines us-
ing the existing pipeline infrastructure. Part of the reason is that VTK
makes use of a demand-driven execution model while some pipelines,
in particular those that need streaming and/or time-dependent compu-
tations fit more naturally in an event-driven architecture.

ParaView [14] is a leading parallel rendering tool built on top of VTK.
It is designed for data-parallelism, where pipeline elements can be in-
stantiated more than once and executed in parallel with independent
pieces of the data. Specifically, a typical parallel execution in Par-
aView involves a pipeline instantiating processes based on the data
input, then, relies on MPI to distribute them on cluster nodes to fin-
ish the computation. However, ParaView does not support a hybrid
MPI/multi-threading model; MPI is also used for creating multiple
processes on the same node with multi-core architecture. This may
impose substantial overhead due to the additional expense of inter-
process communication over thread messages. On the other hand, task
scheduling is performed only once; thus, it is not possible to paral-
lelize a pipeline with more than one sub-network (but not the entire
network) that is suitable for concurrent computation.

Ahrens et al. [2,3] proposed parallel visualization techniques for large
datasets. Their work included various forms of parallelism includ-
ing task-parallelism (concurrent execution of independent branches in
a network), pipeline-parallelism (concurrent execution of dependent
modules but with different data) and data parallelism. Their goals in-
cluded the support for streaming computations and support for time-
varying datasets. Their pioneering work led to many improvements to
the VTK pipeline execution model and serve as the basis for ParaView.

A related system is VisIt [8];, introduced the notion of contracts be-
tween modules, which are data structures that allow modules to nego-
tiate with other modules how to transfer data. This method has proven
to be very useful for optimizing many operations on the dataflow net-
work. Recent versions of the VTK pipeline incorporate many ideas
that were originally developed for VisIt and ParaView.

SCIRun [19] is another parallel dataflow system targeting scientific
environment. Unlike ParaView, the original design targeted multi-
computers with shared memory. SCIRun supports threaded execution
of its network by laying down the network in execution order and run-
ning independent modules in parallel if possible. However, this sys-
tem has no resource management. Each module is assumed to run on
a fixed number of threads, usually just one. SCIRun is also able to
run on a distributed environment with data-parallelism but pipeline-
parallelism is not supported. Other major visualization systems, such
as IBM Data Explorer [1] and AVS [26], operate in similar fashion
as SCIRun. A common design in the systems , such as those listed
as above, is separation of the execution strategy of a module from its
algorithm and the data object that it is operating on. This execution
strategy is often called the executive and is responsible for calling an
algorithm to execute on a certain set of input. There are two models
for assigning executives in a dataflow system. While centralized exec-
utives manages the execution strategy for a set of module or a pipeline,
local executives only operate on a single module.

A major difference between the later systems and VTK (and Par-
aView) is the use of centralized (or explicit) executives instead of
local (or implicit) executives. While it is easier to perform pipeline
network analysis and distributed scheduling with centralized execu-
tives, it requires each module to connect to its centralized executive,
which can sometimes be sitting on a different machine. In contrast,
although local executives allow modules to execute autonomous from
each other, it is difficult for a pipeline using local executives to em-
ploy an event-driven execution model or a more complicated schedul-
ing strategy. Thus, a system that supports both centralized and local
executives as well as demand and event driven execution model, as
our system, could avoid much of the mentioned problems while giv-
ing more flexibility to developers.

The last ten years saw the development of a large number of stream-
ing and out-of-core visualization algorithms (see survey by Silva et
al [24]). These include a number of cache-oblivious techniques [29]
that have been shown to provide a memory-system agnostic way to
obtain efficiency throughout complex memory hierarchies. One of the
key developments in this area is the introduction of streaming meshes
by Isenburg and Lindstrom [12]. Streaming and cache-oblivious algo-
rithms have been getting more mature and can be used in many areas of
visualization because of their ability to work with data that is too large
to fit in main memory. There are techniques for handling surfaces,
volumetric grids, tetrahedral meshes and reeb graphs [13, 21, 28].

Up to now, existing dataflow systems have not exploited these types
of data structures and algorithms. In particular, VTK only supports
streaming structured grids (i.e., regular data). This is partly due to
the complications that handling such data structures introduce on the
demand-driven execution model. The system requires the addition
of “many new requests” in order to support streaming; this makes it
problematic, time-consuming, and over complicated for developers to
implement streaming algorithms. They are much more easily imple-
mented in a event-driven model.

Another advantage of using event-driven streaming execution is the
lessening on the mappable property of streamable data structures [16],
where we must be able to map any portion of the output data to the
pieces of the input. This is often not feasible in many applications
where the output is only known at the end of the stream. In our system,
any module that is part of an event-driven network does not have to
provide data mapping capability.



Centralized Push Model

E
New Event

(a)

Centralized Pull Model

E

Data Request

(b)

Distributed Push Model

E
New Event

E

E E

E

(c)

Distributed Pull Model

E

E

E E

E

Data Request

(d)

Module
Message Data Dependency

Executive

Fig. 2. Classes of pipeline models (a) a centralized push model handling
a new event acting on the highest upstream module in the pipeline (b) a
centralized pull model handling a data request on the bottom-left module
in the pipeline (c) a distributed push model handling a data request at
the highest upstream module in the pipeline (d) a distributed pull model
handling a data request on the bottom-left module in the pipeline

3 BACKGROUND

In this section, we will discuss some background material necessary
for understanding our method and its contributions.

As we have defined previously, a pipeline consists of a series of mod-
ules executing on a given set of data. The input data to these mod-
ules may or may not be independent of other modules in the pipeline.
Therefore, when a module executes, a level of coordination is required
between the modules and their data dependencies. In the simplest
form, this can be implemented in the algorithm at the module level.
However, as dataflow systems become more complex, this coordina-
tion is typically assigned to a separate component called the executive.
The executive is responsible for all coordination, instructing the mod-
ule when and on which data it should operate. To handle this coor-
dination, the component holds pipeline information, such as upstream
and downstream modules, and processes requests to the module from
the pipeline. In this approach, algorithms can be implemented based
purely on the computational task required, without consideration for
the topology of the pipeline.

In existing systems, executives are usually deployed as either central-
ized or distributed. A centralized executive operates globally and is
connected to every module in the pipeline. Therefore, there is one
central process tracking all changes to the network and handling all re-
quests and queries to the pipeline. This approach gives the system the
advantage of having control over the entire execution network, thereby
making it easily distributed across multiple machines. However, this
centralized control leads to high overhead in the coordination and re-
duces the scalability of such systems, especially when operating on
complex pipelines.

Unlike a centralized executive, a distributed executive is a lightweight
and simple approach. In this scheme, each module contains its own ex-
ecutive, which is only connected to its immediate upstream and down-
stream neighbors. This approach does not suffer the same scalabil-
ity issues of the centralized scheme. However, this myopic view of

A

B

Piece #1 Piece #2

Piece #1

A

B

A

B

Request
Piece #1

Piece #1

A

B

Request
Piece #2

Piece #2

Streaming Push Model Streaming Pull Model 

Streamable Data Structure

Fig. 3. Two different examples of a streaming pipeline. The two left
diagrams show a streaming push model over two steps on a stream-
able data structure. First, the data denoted in dark gray is sent to
module A. After module A has completed execution the stream data
is passed downstream to module B. Module A then receives a new sec-
tion of stream data. On the right two diagrams show a streaming push
model over two steps on the same streamable data structure. When B
receives a request for the section of stream data denoted in dark gray,
the request is sent upstream to the source. This section is then sent
and processed for each module downstream to the request. The next
section requested follows similarly.

A

B

C

D

Piece #2

Piece #1

A

B

Merge

A

B

A

B

(a) (b) (c)

Streamable/Separable Data Structure

Concurrency Execution

Fig. 4. Different types of parallelism above module level (a) task-
parallelism (b) pipeline-parallelism and (c) data-parallelism

the network makes distributing resources or coping with more compli-
cated executing strategies a much more difficult problem.

There are two execution models currently employed in existing
dataflow systems: push and pull pipelines. In [23], these are named
event-driven and demand-driven respectively. Each model has its own
advantages and disadvantages. In a pull pipeline, a module is exe-
cuted only when one of its outputs is requested. See Figure 2 (b) and
(d). If a module’s input is not up-to-date, it will demand or pull the
corresponding upstream module for output. Therefore only modules
that are needed for computing the data request will be executed, thus
avoiding wasteful calculations. However, since a request is dependent
on all upstream modules to be updated before starting computation, the
module that initiates the request will be locked longer than its comput-
ing time. In an push or event-driven pipeline, modules are updated as
soon as an event occurs, e.g. a change in its input. See Figure 2 (a) and
(c). All modules that are dependent on the requested module’s output
are also computed. This results in a shorter locking period, which is
equivalent to the computation time for each module. Nevertheless, this
approach has a key disadvantage of redundancy, generating data and
computations even when they will not be used.

In a system that does not support any level of parallelism, modules are
only allowed to be updated sequentially starting from the sources. For
example, if computed in this way the pipeline of Figure 4(a) would run
in the order of ABCD. As you can see from this simple example, there
would not be any performance gain when executing such a pipeline
sequentially on a multi-core machine.

With the proliferation of multi-core machines, parallelism in dataflow
systems has become increasingly desirable. Therefore it has been the



focus of a large body of research including the work of Ahrens et al. [2]
in visualization. Given this hardware, computing a pipeline without
parallelism, i.e. sequentially, is not the optimum scheme for maxi-
mizing performance unless parallelism can be exploited at the mod-
ule level. We call this case module-parallelism. For instance, VTK
currently follows this model where each pipeline is computed sequen-
tially but each module has the ability to use all available cores. As
an example, consider the pipeline outlined in Figure 4(a) computed
on a machine with multiple cores with a scheme that exploits module-
parallelism. Even though the pipeline is executed sequentially (in the
order ABCD), each module will run on all available cores during their
execution. This increases the utilization of computation resources by
running all resources on a single module (which typically only con-
tains small computations). Though this has the unfortunate effect of
increased overhead due to memory access collisions.

A second form of parallelism is task-parallelism. This scheme allows
independent branches of the networks to run in parallel each using
their own thread. See Figure 4(a). In this example, modules A and B
are independant of module C, therefore A and B are allowed to be run
concurrently with C. Branches that share common upstream modules
are not allowed to run in parallel because a typically modules are not
reentrant. Updating a common upstream module simultaneously from
two different threads may cause program failure.

In a system that supports pipeline-parallelism, pipelines are parti-
tioned into sub-networks operating on different tasks. During exe-
cution, each network would be allocated their own threads and each
is computed concurrently on streams of the data. However, pipeline-
parallelism is only applicable to separable or streamable data struc-
tures. In addition, partitioning of the pipeline into sub-networks must
be proportional to the computing resources (e.g. the number of cores)
in order to maximize the performance. This is not scalable since this
division is typically done by hand. Figure 4(b), is an example of
streaming pipeline parallelism between two modules.

The last common form of parallelism is data-parallelism. In this
scheme, the data is divided into independant pieces to be processed
in parallel. At the end of execution, data is collected and merged into
a single result. This is an extremely useful method for large datasets
that must be processed out-of-core and and is highly scalable to clus-
ters of machines. However, this performance gain in maintained only
if there is one merge operation in the end. Otherwise, data must be re-
distributed multiple times causing a large degradation of performance.
Fortunately, a single merge is the usual case for rendering pipelines.
Figure 4(c) illustrates the use of data-parallelism, where the pipeline
AB is duplicated multiple times to work on the separate pieces of the
streaming data. ParaView is a common system that follows this model
of parallelism.

As outlined above, streaming algorithms can have a large impact on
parallel computation schemes. Theoretically, streaming algorithms
can be implemented in dataflow systems using either push or pull mod-
els. However, due to its nature of constantly supplying data, a push
model is preferred. Figure 3 illustrates this simple approach. A typical
streaming pipeline would consist of a streamable data structure act-
ing as a source constantly supplying data downstream to processing
modules. If the system supports pipeline-parallelism, modules can be
executed concurrently with different pieces of data as well.

For pull models, streaming can also be applied, however, at the cost
of pipeline-parallelism. As shown in the right diagram of Figure 3,
instead of flowing data down the pipeline constantly, the streaming
source must wait for requests from modules downstream. Since each
module often can only process one request at a time (not re-entrant),
the whole pipeline must be blocked for the sink module, B.

Besides streaming architectures, streamable data structures have also
been a major hurdle for efficiently porting streaming algorithms into
dataflow system. Currently, only structured data is supported. Data is
usually broken into sections with a ghosted region (overlapping area

SCHEDULER RESOURCES

Trigger,
Execute &
Feedback

Distribute

RE
SO

U
RC

ES

INPUT

PERFORM
COMPUTATION

OUTPUT

Demand-Driven Requests
Pulling Data

Event-Driven Requests
Pushing Data

Module

Message

Data Dependency

Executive

Our Uni�ed Model

E
New Event

E

E

E

E E

E

Data Request

Fig. 5. An overview of our system architecture

between sections) and sent down the pipeline. Only VTK-based sys-
tems support streamable data structures at this time. In order to work
properly under a pull model, a strict set of constraints on the data is
required. The data must be separable (can be broken into sections),
mappable (a portion of the input can be computed from the output),
and result invariant (the result must be invariant to the number of
pieces and threads). However, many streaming algorithms in prac-
tice cannot guarantee these constants. For example, some streaming
algorithms may not be mappable without performing the actual com-
putation. Though, the mappable constraint may be relaxed if a system
uses a push model.

4 PARALLEL DATAFLOW ARCHITECTURE

In this section, we discuss the design of a flexible dataflow architecture
that can run efficiently on multi-core machines. A diagram outlining
an overview of our system is shown in Figure 5.

4.1 Execution Model

Similar to other models, coordination of modules is handled through
the use of executives. However, we borrow from the best of all previ-
ous models to construct in a new unified model that is efficient, flex-
ible and highly scalable. Rather than being constrained by just one,
the executives in our system are allowed to follow both push and pull
strategies. Our executives also support both centralized and distributed
executive strategies.

Modules have the ability to make a PULL request to ask for one or
more of its upstream modules to be brought up to date up-to-date.
Likewise, a module can also push data downstream using the com-
mand PUSH. This simply transfers modified module data downstream.
The module will lock until its downstream modules are finished either
copying the data or taking control of the ownership of the data.

This multi-request unified strategy can have obvious positive conse-
quences for some very common pipelines. For example, the ability
to handle both pull and push requests is useful in visualization in the
implementation of a view-dependant progressive viewer. Whenever a
viewport is changed, the viewer could request its upstream renderer
to produce new images by issuing the PULL command providing in-
teractive feedback of coarse images. However, when the user stops
interacting, the data stream source can PUSH data from finer levels
upstream to the viewer providing the viewer with the full-resolution
data. See Section 5 for an implementation of such an system.

The unified implementation also supports both centralized and dis-
tributed executives. By default, each module has its own executive fol-
lowing a typical distributed model. However, our system allows users
the ability to mark any sub-network in the pipeline to be controlled
by a centralized executive. This centralized executive treats the sub-
network as a compound module. This unified executive model allows
our system to retain the lightweight distributed scheme, but also adds
benefits of global scheme in a highly scalable way. Figure 5 shows an



example of our unified execution model both making a push and pull
request on a pipeline using a mixed centralized and distributed model.

4.2 Scheduler

To achieve this flexibility in the executive and to maximize perfor-
mance, a level of control must be delegated to another lightweight
process in our model. Since our model uses executives operating lo-
cally and centralized, resource management is now handled by an ex-
ternal resource scheduler. While the responsibility of the executive is
still to ensure the order of execution of the whole pipeline, the sched-
uler will control when they are executed and with how many resources
are allocated to the algorithm. Thus, the scheduler can be thought
of as a queue of executives waiting to run whenever resources are
available. To handle this resource management, our localized exec-
utive strategy is extended to contain some internal knowledge of the
resources it has been allocated. A module stores both the requested
amount of resources and the allocated amount. For performance, these
may not necessary be the same. A module, with this knowledge, com-
plies with the allocated amount. This allows our system to maximize
performance globally. Below are the steps outlining how a centralized
scheduler interacts with the rest of the pipeline:

1. If triggered by a module asking for its output or to be updated
(through its executive)

2. Adds the executive the scheduler queue

3. Computes the layout of the network for computation

4. Estimates and distributes resources using a scheduling strategy

5. Executes queued request(s), each module when completed will
release resources and return statistics

6. Reapplies the scheduling strategy for every successful request
from the orignal module

7. Becomes inactive when there are no more requests

Scheduling strategy Our scheme is flexible enough to handle any
scheduling strategy. For our testing, we have implemented a heurisics
strategy based on time statistics. At the time of rescheduling, our
scheduler transverses the whole pipeline starting at the sink modules
and distributes resources among the branches. Since module can only
be executed if its inputs are up-to-date, the scheduler minimizes the
difference in input computation time for each module. At run-time,
modules are scheduled and allocated with resources proportional to the
accumulated computation time from its source modules in the pipeline.
If a module has more than one source, the scheduler distributes re-
sources proportionally to the arrival time of the previous request. For
example, in Figure 3 if the data flowing from module A to D in re-
quired twice the computation time as the data flowing from module C
to D, then the branch containing module A and B will receive twice the
resources as the branch containing C. In a single branch, sub-pipelines
that can be executed concurrently with resources distributed evenly.
The scheduling can be summarized as:

Module.Time: the accumulated time from a source
function ScheduleResource(Module A, Resources Total):

UpstreamModules = FindUpstreamModulesFrom(A);
if UpstreamModules is empty:

A.AssignResource(Total)
return

TotalLastUpdateTime = 0
for module in UpstreamModules:

TotalLastUpdateTime += module.Time

for module in UpstreamModules:
ScheduleResource(module, Resource *

module.Time /
TotalLastUpdateTime)

The above scheduler can address both task-parallelism and pipeline-
parallelism. Data-parallelism can be added by manually duplicating
pipeline elements.

4.3 Data Connection

Data duplication is avoided whenever possible since copying and allo-
cating memory could substantially degrade the whole pipeline perfor-
mance. This is the case especially in a shared-memory systems, where
multiple cores have the ability to access memory simultaneously. As a
result, modules are encouraged to pass pointers downstream and per-
form processes in-place. To handle this functionality, every output data
object in our system contains a flag indicating if it can be changed in-
place by downstream module. This does not account for the fact that
there can be more than one downstream module using the data, there-
fore our system will duplicate and create additional instances of the
same object as needed.

If modules are modifying data in-place, the downstream modules are
allowed to execute as soon as the data is ready. This allows a lock-free
execution strategy. However, locking can be implemented by simply
allowing a module to retain ownership of the data until it is finished
processing. If all modules in a pipeline are internally locking their
data, the scheduler gracefully handles this situation by alternatively
executes modules at different levels in the pipeline.

4.4 Streaming Computation

As discussed previously, the primary reason streaming visualization
algorithms have not populated dataflow systems in the past is the due
to a lack of a general streaming framework. As a contribution to this
paper, we have introduced this missing element to our system and ad-
dressed the two primary concerns: streaming execution and streamable
data structures.

Since a streaming algorithm naturally fits into the methodology of a
push model where data is contiguously flowing downstream, we have
built two abstract modules into our system to work in tandem; Stream-
ingGenerator and StreamingMerger. These modules denote the start
and end respectively of a sub-network that will execute in a stream-
ing, push fashion. In the sub-network the stream generator is the data
source, responsible for pushing data downstream to be processed. The
stream merger marks the end of the streaming sub-network and merges
the streaming into one final output. Other modules outside the stream-
ing subnetwork can use the merger module as an interface for pull
requests. In this case, the merger module will send a request upstream
to its generators creating a streaming, push data access. Therefore, we
exploit the advantages of a streaming, push model while maintaining
the functionality of a pull request. These new sub-networks interact
seamlessly with the rest of our unified model.

Our system extends streamable data structures to beyond the stan-
dard structured grids by generalizing the streaming mesh format. The
streaming mesh format is originally designed for triangular meshes by
interleaving its geometry with connectivity. This introduces a notion
of finalized and unfinalized vertices. A vertex is finalized if it will
not be used by any other element later in the stream, thus, it is safe to
remove it from the buffer. Our generalized streamable data structure
is considered as a single stream that can be segmented with overlap-
ping regions. The dimension of overlapping regions are defined by
the finalization of the stream elements itself, i.e. unfinalized elements
cannot be processed and will remain in the buffer. However, we have
also extended the definition of finalization. Instead of allowing the
data to decide which elements are finalized, the algorithm is also al-
lowed to flag elements as unfinalized, e.g. an image filter may set a
neighborhood outside the processing image as unfinalized.

Streaming techniques are often used in other dataflow systems to re-
duce the memory footprint and increase cache coherency. They are



vtkImageGaussianSmooth

vtkImageGaussianSmooth

vtkImageReader

vtkImageWriter

vtkImageBlender

vtkImageGaussianSmooth

vtkImageReader

vtkImageGaussianSmooth

vtkImageGaussianSmooth

vtkImageReader

vtkImageWriter

vtkImageBlender

vtkImageGaussianSmooth

vtkImageDataStreamer

vtkImageReader

vtkImageGaussianSmooth
StreamGenerator

vtkImageGaussianSmooth

vtkImageReader

vtkImageWriter

vtkImageBlender

StreamGenerator

vtkImageGaussianSmooth

StreamMerger

vtkImageReader

(a) (b) (c)

Fig. 6. Simple Gaussian smooth pipeline (a) VTK default image pipeline
(b) VTK streaming image pipeline (c) a pipeline using our scheme

rarely used to increase performance of streaming computation by con-
current execution. In our scheme, we allow the scheduler to operate
on the push sub-network thereby maximizing pipeline-parallelism.

4.5 Framework Implementation

We implement our framework on top of VTK to inherit a robust soft-
ware infrastructure with existing algorithm implementations for test-
ing and comparison purposes. We replace VTK’s default streaming
demand-driven pipeline executive with our unified executive. The
executive interacts with the scheduler and can be centralized to sup-
port a push model. In fact, our new executive class is inherited
from vtkStreamingDemandDrivenPipeline, thus, should be
backward compatible with all VTK pipelines with the added advan-
tage of the multi-threaded scheduler.

In this new executive, we also implement a light interface to allow sub-
classes of vtkAlgorithm to quickly interact with the unified model.
In particular, new functions that have been added to this model were:
PULL(port, connection) that is a blocking call to acquire data
from a module connection and PUSH(port) that will take data ex-
isting at a module port and pass it to all consumers. Since VTK uses
distributed executives with demand-driven pipelines, it was very diffi-
cult to retrieve global information from our unified executive. We had
to build our own request tracing system, as well as execution network
manager, on top of this class for directing execution.

In order to support the in-place data manipulation, we have added a
new class vtkFlexibleDataObject which can smartly handle
pointers with reference count for copy-on-demand and locking mech-
anisms for communication between modules. One of the problems we
face with VTK is that it is not thread-safe. This has the unfortunate
problem of causing the request passing system to crash if intense care
were not taken in implementation. As a result, we had to build our
own locking mechanism and use CallAlgorithm instead of send-
ing requests.

5 APPLICATIONS

To demonstrate the performance and flexibility of our method, we have
implemented our framework as a new executive execution strategy
in VTK [15]. Specifically, we have tested examples of our frame-
work processing structured imaging data and unstructured tetrahedral
meshes.

VTK has been the subject of a large body of streaming research and
therefore is a apt system for both implementation and comparison to
our framework. We have selected imaging as the primary focus for
testing since VTK only fully supports multi-threaded processing and
streaming in its imaging framework, and therefore would be a proper
basis for comparison. While our initial implementation and testing
uses VTK, we are by no means limited to its use only.

All tests are performed on a Dual Processor Dual Core Opteron 275
with 8GB of RAM, unless otherwise stated.

ProgressiveRenderer

...DataAccess DataAccess DataAccess

Average1 image

12 images

Fig. 7. A pipeline to compute the average of 12 image sources. When
a viewing window request is sent, an average of each of the 12 source
images is compute for each color channel. After the average is taken,
the pixel values are sent downstream to a progressive renderer.

ProgressiveRenderer

GrayScale GrayScale GrayScale

Average

Standard
Deviation

Di�erence
L2 Norm

Edge
Detection

Downsample Downsample Downsample

...DataAccess DataAccess DataAccess

...

1 image 12 images

Fig. 8. An asymmetric, deep pipeline to compute several image pro-
cessing functions. When a viewing window request is sent, each of the
12 source images for the given viewport is converted to its grayscale
equivalent. The average is then taken of these values. This average
is sent downstream to a module to compute the standard deviation and
a module to determine the ”closest” source image (L2 norm of the dif-
ference from the average. This ”closest” is sent to the progressive ren-
derer. The standard deviation is sent to an edge detection algorithm.
The edge map, the standard deviation map, and the average are sent to
the progressive renderer. The average is rendered as a height field on
a quad mesh, while the standard deviation and edge map are textures
on the mesh. All three are down-sampled before being rendered.

5.1 Multi-core Image Processing

The VTK image processing pipeline is capable of multithreaded pro-
cessing, but only at the module level. We compare this existing func-
tionality to the full pipeline parallelism of our framework. Using
VTK’s default multithreaded pipeline enables the system to maximize
performance by utilizing all available cores on a per module basis.
For the processing of massive imagery, this performance gain is out-
weighed by the necessary high memory footprint and poor data local-
ity in each thread. For such images, VTK provides the ability to per-
form out-of-core streaming of image data (using the vtkImageDataS-
treamer class), which alleviates the problems outlined above for the
standard system. Specifically, it requires a smaller memory footprint
and retains high cache coherency. This functionality is unfortunately
demand-driven, which can block pipeline parallelism causing poor
performance for large numbers of threads on small portions of data.
Our our system pipeline does not suffer from the problems inherent in
VTK’s default or streaming pipeline and can exploit parallelism, low
memory requirements, and high locality.

To test the performance of the system on imaging pipelines, we have
constructed three simple, yet computationally expensive, examples.



50MP Image Inputs
Threads VTK Default VTK Streaming Our Streaming

1 103.8s 21.6s 21.9s
2 11.6s 12.8s 9.7s
4 8.6s 9.2s 7.4s
8 8.4s 9.0s 6.2s

200MP Image Inputs
Threads VTK Default VTK Streaming Our Streaming

1 468.4s 280.7s 281.1s
2 171.2s 58.6s 46.3s
4 100.3s 37.5s 31.4s
8 45.5s 37.1s 25.5s

Table 1. Comparison of image processing between VTK and our system
for the simple gaussian pipeline. See Figure 6 for diagrams of each
pipeline.

Gaussian Smooth Pipeline VTK’s gaussian smooth module can be
configured to maximize performance by using all available cores.
For testing, we use two synthetic images of 50 megapixels and
200 megapixels in size. Two copies of each image are loaded and
processed in a simple pipeline, where one image is processed by the
Gaussian module once and the other copy twice. See Figure ?? for a
diagram of the pipleine.. As we show in the companion video and in
Table 1, our framework offers significant improvement over VTK’s
default and streaming frameworks with vtkImageDataStreamer.
Both pipelines have been tested independantly on an 8-core Opteron
3.0GHz machine with 16GB of RAM. The number of threads for
VTK’s image algorithm is controlled in our test program by using
vtkMultiThreader::SetGlobalNumberOfThreads.
Since these imaging classes are derived from
vtkThreadedImageAlgorithm, they are designed to run
threaded. Therefore, when setting the module to run on a single
thread, some degradation in performance may occur.

12 Month Average Pipeline For this example, we show the per-pixel
average of 12 months of satellite imagery (1 image per month) from
NASA’s Blue Marble Project [18]. Each image from this data set is
3.7-gigapixel, therefore we must employ out-of-core data access. For
this implementation, we have chosen the hierarchical z-order scheme
as outlined in [20]. In practice, we have found this method well-suited
for our access needs since it inherently provides a hierarchical struc-
ture and exhibits good data locality in both dimensions. This allows
our system to have fast data access and intelligent partitioning of the
image for processing.

We demonstrate the performance of our system versus VTK’s stream-
ing system by processing the per-pixel average of the 12 months of
data. See Figure [?] for a diagram of the pipeline. This average is
view dependent, therefore the system only needs to process the pixels
visible on the screen. Each module operates on a hierarchical reso-
lution from our data access and data is displayed progressively as it
is available. Even with this simple operation and reduction to visible
pixels, our fully parallel system significantly outperforms VTK’s cur-
rent framework achieving a more than 3 times speedup. See and the
companion video for these results.

Multi-visualization Pipeline For this example, we have deepened the
12 month average pipeline to incorporate more image processing mod-
ules, increase the data dependency between them, and increase the
asymmetry of the pipeline. Like the previous example, we are access-
ing 12 images, one for each month from NASA’s Blue Marble Project
[18]. Also, we have employed the same data access scheme from the
previous example and all operations are purely view dependent on a
per-pixel basis.

The first stage of the pipeline involves the conversion of our data
sources from 8-bit RGB to their grayscale floating-point representa-
tion. After the image is converted, a per-pixel average is computed for
all images. This average is streamed to a module that computes the

TetStreamingMesh

TetStreamMerger

UpdateQuadricsUpdateQuadrics UpdateQuadrics UpdateQuadrics

TetStreamMerger

TetStreamingMesh

UpdateQuadrics UpdateQuadrics UpdateQuadrics

Simpli�cationBufSimpli�cationBufSimpli�cationBuf

Decimate

Simpli�cationBuf

Decimate

Simpli�cationBuf

DecimateDecimateDecimate

TetStreamMerger

TetStreamingMesh

(a) (b) (c)

Fig. 9. Streaming simplification of tetrahedral meshes under our sys-
tem (a) stream with no concurrency (b) data-parallelism (c) complete
parallelism

standard deviation. The average is also streamed to another module,
which computes the image that is closest in terms of the L2 norm of
the difference between the original data and the average. This will
give the user the best representative month for the given viewing win-
dow. The standard deviation is fed to an edge detection module. This
will give the user the areas of greatest change in deviation from the
average. Finally, the standard deviation, the edges of the standard de-
viation, the average, and the pixel data from the best representative
month are streamed to the progressive renderer for visualization. The
standard deviation, standard deviation edge map, and average are also
down-sampled in this process for display. The average is rendered as a
height field quad mesh with the standard deviation and edge map as a
texture on the mesh. Each module operates on a resolution at a time of
the image hierarchy given by our data access from coarse to fine. Data
is rendered in a progressive manner as it is completed. See Figure [?]
for a diagram of the pipeline. We were able to achieve a speed up of
over two times with our system.

5.2 Streaming Tetrahedral Simplification

To test and demonstration our unstructured streaming capabilities, we
implemented the streaming tetrahedral mesh simplification technique
of Vo et al. [28]. Given the current infrastructure of VTK without our
scheme, this would not be possible. There is no streamable data struc-
ture for unstructured grids in VTK. In order to implement streaming
simplification in VTK, a mapping of a portion of the output to the por-
tion of the input meshes is necessary. This can only be done after the
actual computation. Finally, VTK’s streaming pipeline only supports
streamable data with a pre-determined number of sections, while the
algorithm only defines the end of a stream on the fly.

In our system with the generalized streaming scheme extension, we
are able to construct and execute the corresponding pipeline as shown
in Figure 9. TetStreamingMesh and TetStreamMerger are subclasses
of StreamGenerator and StreamMerger respectively. The streaming
algorithm consists of 3 main processing units: UpdateQuadrics builds
the quadric metrics for vertices of the meshes, SimplificationBuf com-
bines new streams of data into the current buffer and readies the data
to go be processed by Decimate, which performs an edge collapse op-
eration. The system also exploits several locations of data-parallelism
in the pipeline.

Figure 9a shows pipeline with no added concurrency execution except
for the pipeline-parallelism from our scheduler. The original version
of the application is highly optimized for a single module. One would
assume a degradation in performance from the optimized version, if
the single module is executed in sections without any changes to the
code. Due to the increase in performance inherent to our system, it can
negate this degradation and achieve a similar benchmark.

To exploit data-parallelism, we can change the pipeline to allow our
streaming source to send data to multiple modules. This type of data-
parallelism is possible due to the fact that TetStreamingMesh utilizes
the finalization property of streaming meshes to protect boundary cells
across pieces. Figure 9b shows a manual tweak to the pipeline to cre-



Streaming Simplication of Tetrahedral Meshes
Models (Tets) Original Streaming Quadric Pipeline

Inst. Inst.
Torso 1.0M 8.5s 8.4s 7.9s 3.0s

Fighter 1.4M 10.1s 9.5s 8.4s 3.6s
Rbl 3.8M 37.4s 35.6s 31.5s 8.9s
Mito 5.5M 52.0s 53.1s 44.9s 10.2s

Table 2. Running time for completely simplifying models to 10% of its
original resolution

ate a data-parallel pipeline with three UpdateQuadrics. The three mod-
ules are working on different portions of the meshes. However, as we
see in Table 2 the building of quadrics is not the main bottle neck of
this application. Therefore we still do not gain much in performance.
Nonetheless, there is still a slight improvement.

In Figure 9c, the we have converted the pipeline to have complete
parallelism; duplicating all three processes into three concurrent exe-
cutions. As we can see in Table 2 there is a significant improvement
over the original pipeline due to the parallelism. Unfortunately such
an extremely parallel implementation of this algorithm can reduce the
quality of the simplified mesh since there are too many boundary tri-
angles to preserve.

Even though an optimal parallel, streaming pipeline for this particular
algorithm was not found in testing, we feel that this provides an exam-
ple of our system’s ability to facilitate experimentation with streaming
and parallelism with little effort.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose new techniques for exploiting multi-core
architectures in the context of visualization dataflow systems. Specifi-
cally, we offer a robust, flexible and lightweight unified data-flow con-
trol scheme for visualization pipelines. This unified scheme allows
the use of pull (demand-driven) and push (event-driven) policies in
a single pipeline. The new unified scheme also combines the posi-
tive attributes of both centralized and distributed executive strategies.
Moreover, we offer a system that includes new support for stream-
ing of structured and unstructured data. As our results in the previ-
ous section show, along with the companion video, our new parallel
execution strategy offers significant benefits over a both multi-core,
serially-executed visualization pipelines and pipelines that are com-
puted in streaming modes.

In the immediate future, we plan to expand our new scheme to larger
machines. Although we have shown significant improvements on 4-8
cores, we feel that this is only a lower bound on the performance in-
crease possible. We have designed this scheme with scalability as a
primary consideration. In the long run, we feel this can be expanded
to use all available processing resources, including GPUs. In exist-
ing dataflow systems, GPUs are relegated to back-end rendering tasks
(based on OpenGL). Despite their proven superiority in terms of raw
performance, it is not possible to use available GPUs to perform any
of the computations in existing dataflow architectures. In fact, using
GPUs to perform dataflow computations is not trivial since a modern
GPU requires on the order of 1000 to 10,000 threads to achieve peak
performance, and the design of the existing supported data structures
makes this very difficult. Obviously, exploiting multiple GPUs either
in a single machine or in the cluster of machines is not feasible with
current architectures. To design a dataflow architecture that treats all
the processing elements in a system as first rate processing elements,
including CPUs, GPUs, and potentially other types of processing ele-
ments is a challenging and noteworthy goal.

REFERENCES

[1] G. Abram and L. Treinish. An extended data-flow architecture for data
analysis and visualization. In VIS ’95: Proceedings of the 6th conference
on Visualization ’95, page 263. IEEE Computer Society, 1995.

[2] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, and M. Papka.
Large-scale data visualization using parallel data streaming. IEEE Com-
puter Graphics & Applications, 21(4):34–41, July/Aug. 2001.

[3] J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka. A par-
allel approach for efficiently visualizing extremely large, time-varying
datasets. Technical Report LAUR-00-1620, Los Alamos National Labo-
ratory, 2000.

[4] J. Allard and B. Raffin. A shader-based parallel rendering framework.
Visualization Conference, IEEE, 0:17, 2005.

[5] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling interactive, multiple-view visualizations. In
Proceedings of IEEE Visualization, pages 135–142, 2005.

[6] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thomp-
son. Time dependent processing in a parallel pipeline architecture. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1376–
1383, Nov./Dec. 2007.

[7] A. Chalmers, T. Davis, and E. Reinhard. Practical Parallel Rendering.
AK Peters Ltd, July 2002.

[8] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J.
Whitlock, and N. Max. A contract-based system for large data visualiza-
tion. In Proceedings of IEEE Visualization, pages 190–198, 2005.

[9] D. Duke, M. Wallace, R. Borgo, and C. Runciman. Fine-grained visu-
alization pipelines and lazy functional languages. IEEE Transactions on
Visualization and Computer Graphics, 12(5):973–980, 2006.

[10] R. Haber and D. McNabb. Visualization idioms: A conceptual model for
scientific visualization systems. In Visualization in Scientific Computing.
IEEE Computer Society Press, 1990.

[11] P. E. Haeberli. ConMan: A Visual Programming Language for Interactive
Graphics. In Proceedings of SIGGRAPH’88, pages 103–111, 1988.

[12] M. Isenburg and P. Lindstrom. Streaming meshes. In IEEE Visualization
’05, pages 231–238, oct 2005.

[13] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming compression of
triangle meshes. In Third Eurographics Symposium on Geometry Pro-
cessing, pages 111–118, July 2005.

[14] Kitware. ParaView. http://www.paraview.org.
[15] Kitware. The Visualization Toolkit (VTK) and Paraview. http://

www.kitware.com.
[16] C. C. Law, K. M. Martin, W. J. Schroeder, and J. Temkin. A multi-

threaded streaming pipeline architecture for large structured data sets. In
IEEE Visualization ’99, pages 225–232, Oct. 1999.

[17] S. Marchesin, C. Mongenet, and J.-M. Dischler. Multi-gpu sort last vol-
ume visualization. In EG Symposium on Parallel Graphics and Visual-
ization (EGPGV’08), 2008.

[18] NASA,. NASA Blue Marble http://earthobservatory.nasa.gov/
Features/BlueMarble/.

[19] S. G. Parker and C. R. Johnson. SCIRun: a scientific programming envi-
ronment for computational steering. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Supercomputing), page 52, 1995.

[20] V. Pascucci, D. E. Laney, R. J. Frank, G. Scorzelli, L. Linsen, B. Hamann,
and F. Gygi. Real-time monitoring of large scientific simulations. In SAC
’03: Proceedings of the 2003 ACM symposium on Applied computing,
pages 194–198, New York, NY, USA, 2003. ACM.

[21] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust
on-line computation of reeb graphs: Simplicity and speed. ACM Trans-
actions on Graphics, 26(3):58:1–58:9, July 2007.

[22] R. Rajagopalan, D. Goswami, and S. P. Mudur. Functionality distribution
for parallel rendering. In IPDPS ’05: Proceedings of the 19th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’05)
- Papers, page 18, Washington, DC, USA, 2005. IEEE Computer Society.

[23] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The Visualization
Toolkit. Prentice-Hall, pub-PH:adr, second edition, 1998. With special
contributors Lisa Sobierajski Avila, Rick Avila, and C. Charles Law. In-
cludes CD-ROM with vtk-2.0. The most recent release is available on the
World-Wide Web at http://www.kitware.com/vtk.html.

[24] C. T. Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algo-
rithms for scientific visualization and computer graphics. In IEEE Visu-
alization 2002, Tutorial #4, 2002.

[25] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, and T. Ertl. Large vol-
ume visualization of compressed time-dependent datasets on gpu clusters.
Parallel Comput., 31(2):205–219, 2005.

[26] C. Upson et al. The application visualization system: A computational
environment for scientific visualization. IEEE Computer Graphics and



Applications, 9(4):30–42, 1989.
[27] W. J. van der Laan, A. C. Jalba, and J. B. T. M. Roerdink. Multiresolution

mip rendering of large volumetric data accelerated on graphics hardware.
In EuroVis07 - Eurographics / IEEE VGTC Symposium on Visualization,
pages 243–250, May 2007.

[28] H. T. Vo, S. P. Callahan, P. Lindstrom, V. Pascucci, and C. T. Silva.
Streaming simplification of tetrahedral meshes. IEEE Transactions on
Visualization and Computer Graphics, 13(1):145–155, Jan./Feb. 2007.

[29] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious
mesh layouts. ACM Transactions on Graphics, 24(3):886–893, Aug.
2005.


