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Abstract
Modern forensic analytics applications, like network traffic analy-
sis, perform high-performance hypothesis testing, knowledge dis-
covery and data mining on very large datasets. One essential strat-
egy to reduce the time required for these operations is to select
only the most relevant data records for a given computation. In
this paper, we present a set of parallel algorithms that demonstrate
how an efficient selection mechanism – bitmap indexing – signifi-
cantly speeds up a common analysis task, namely, computing con-
ditional histogram on very large datasets. We present a thorough
study of the performance characteristics of the parallel conditional
histogram algorithms. As a case study, we compute conditional his-
tograms for detecting distributed scans hidden in a dataset consist-
ing of approximately 2.5 billion network connection records. We
show that these conditional histograms can be computed on inter-
active time scale (i.e., in seconds). We also show how to progres-
sively modify the selection criteria to narrow the analysis and find
the sources of the distributed scans.

Keywords: query-driven visualization, network security, network
connection analysis, data mining, visual analytics

1 Introduction
A typical day’s worth of network traffic at an “average” government
research laboratory may consist of tens of millions of connections
comprising multiple gigabytes worth of connection records. These
connection records can be considered as “conversations” between
two hosts on a network. They are generated by routers, traffic ana-
lyzers or security systems, and contain information such as source
and destination IP addresses, source and destination ports, duration
of connection, number of bytes exchanged and so forth. A year’s
worth of such data currently requires on the order of tens of ter-
abytes or more of storage. According to Burrescia [Burrescia and
Johnston 2005], traffic volume over ESnet, a production network
servicing the U. S. Department of Energy’s research laboratories,
has been increasing by an order of magnitude every 46 months since
1990. This trend is expected to continue into the foreseeable future.

The steady increase in network traffic volume exacerbates the diffi-
culty of forensic cybersecurity and network performance analysis.
Current network traffic analysis toolsets often rely on simple utili-
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ties like grep, awk and gnuplot. While sufficient for analyzing small
amounts of network traffic data, these utilities do not scale nor per-
form to the level needed for analyzing current or future levels of
network traffic. To address the need for rapid forensic analysis ca-
pabilities, our work presents advances in two complementary tech-
nology areas, namely scientific data management and visual analyt-
ics.

Interactive network traffic data analysis is often based on histogram
methods. One key feature distinguishing histograms in data min-
ing applications from other types of applications [Ioannidis 2003]
is the use of ad-hoc conditions to reduce the number of data records
being analyzed. For example, to identify unusual activities on TCP
ports, we may compute a histogram over destination ports and time
to discover high or unusual levels of activity on a particular port.
However, rather than computing a histogram over all data records,
we might restrict the computation to those network sessions to a
set of criteria like those that originate from a specific IP address or
address range. The restriction on originating IP or other conditions
is referred to an external condition. Analyses of data records sub-
ject to such external conditions are commonly known as conditional
analyses. Our objective here is to develop efficient algorithms for
a special type of conditional analysis, i.e., computing multi-variate
histograms under arbitrary external conditions. We call this type of
histogram conditional histogram.

The main contributions of this paper are as follows:

• We build upon recent previous work that combines state-of-
the-art indexing with a novel approach to visual analytics
[Bethel et al. 2006]. In this paper we introduce a new family
of parallel algorithms for efficiently building 2D conditional
histograms. The key feature of these parallel algorithms is
that they operate on bitmap indices for evaluating the external
conditions to efficiently populate histogram bins.

• We present a detailed performance analysis of these condi-
tional histogramming algorithms on a 32-way parallel SMP
platform. We show that this work helps accelerate the most
data-intensive and time-consuming part of forensic analysis,
namely data mining and knowledge discovery based upon
multi-dimensional queries.

• We apply the rapid conditional histogramming technology in
conjunction with a specialized visual analytics application for
detecting and analyzing distributed scans. The data for this
case study covers a 42-week period at a US government sci-
ence laboratory. The case study and its forensic analysis
would not be possible without the combination of technolo-
gies from scientific data management and visual analytics.



2 Previous Work
Our work is based on a multi-disciplinary approach of techniques in
network traffic analysis, efficient querying and indexing, and query-
driven visualization. In this section we give a brief overview of the
related work in these areas.

2.1 Network Traffic Analysis and Visualization

A network connection can be thought of as a set of packets passing
between two hosts within a given time interval that have common
characteristics. An example of a network connection is a single
communication session or an interaction between two hosts on the
Internet. Several standard tools exist for capturing network connec-
tion data. For larger environments, routers and switches can pro-
vide connection data in specialized formats such as NetFlow [Sys-
tems 2005] or SFlow [Phaal et al. 2001]. Another tool for analyzing
network connection data is Bro IDS [Paxson 1998]. Bro can out-
put connection records, which are slightly different than traditional
flow records, but that contain substantially the same information.
Other systems generate a single full-duplex connection record that
also contains byte and packet counts for the reverse direction [Up-
hoff and Criscuolo 2004].

For network connection data analysis, the special purpose systems
and software provided by network equipment vendors for analyz-
ing NetFlow and SFlow records are typically optimized for aggre-
gate network usage and trend analysis rather than forensic analysis.
Freely available tools are typically architected as a collection of
command-line utilities for collecting, concatenating, filtering, and
summarizing network connection data. Fullmer’s OSU Flow-Tools
[Fullmer and Romig 2000] is a good example of such a collection
that is best suited for small-scale analysis. Plonka’s FlowScan suite
[Plonka 2000] consists of a collection of perl scripts and modules
that provide stateful flow inspection and charting/graphing capabil-
ities. Both these utilities store data in flat files in a binary format
(FlowScan uses a compressed binary format). Both use a sequen-
tial scan through data to accomplish filtering operations. Gates’
SiLK Suite [Gates et al. 2004] is a collection of software utilities
for flow data collection and analysis suite that uses a reduced-size
flow record in conjunction with data compression and file/directory
hierarchies to maximize filtering performance and minimize data
footprint size on disk. SiLK uses bitmaps to accelerate filtering op-
erations based upon IP address, but does not use bitmap indexing or
any other form of indexing structure, other than a tree-like directory
and file hierarchy, to accelerate query operations.

Intrusion Detection Systems (IDS) like Bro are typically good at
analyzing events that are closely correlated in time where analysis
can rapidly yield actionable results. However, over large time scales
and/or very large data sets, the design decisions that make IDS soft-
ware appropriate for rapid response limit applicability to problems
of scale. Typical failure modes include unbounded memory con-
sumption or computational overload that inhibits a rapid response.

Traditional high volume network traffic analysis usually begins af-
ter the IDS provides an alert, such as when one or more IP addresses
are associated with a possible attack. The tool most typically used
for searching text-format connection records is grep. Search results
post-processing is typically performed with tools such as perl, shell
scripts and gnuplot. These tools work well for analyzing moderate
amounts of network traffic data. However, they do not scale up to
terascale data sizes.

Previous work on network traffic visualization has focused on fil-
tering and visual presentation of different types of network traffic
data, including connection data, routing information, IDS alerts and
so forth.

One of the most widely deployed tools for visualizing network traf-
fic levels and statistics is MRTG [Oetiker 2006a], which relies on
RRDtool [Oetiker 2006b] for charting and graphing. These tools
are in use at nearly all sites that run production networks for the
purpose of showing traffic levels at multiple temporal resolutions.
One shortcoming of RRDtool is that detail in data temporally dis-
tant from the present is lost due to its being summarized and aver-
aged in the round-robin database.

More recently, [Lau 2004; McPherson et al. 2004; Lakkaraju et al.
2004] describe applications that map network connection variables
to axes, then present activity, or lack thereof, at the appropriate
grid location (a form of histogram). The basic idea is to facili-
tate rapid visual discovery of features, patterns or activity in net-
work traffic or network connection data. Other applications use a
linked node concept to convey the presence of traffic or traffic lev-
els between addresses mapped to a grid [McPherson et al. 2004;
Yin et al. 2004; Goodall et al. 2005], to geographic locations or
some other representation of network topology [Cox et al. 1996;
Koutsofios et al. 1999], or to a task-oriented metaphorical repre-
sentation of internal and external networks [Fisk et al. 2003; Livnat
et al. 2005; Goodall et al. 2005]. Several other applications focus
on visualization of IDS alerts [Komlodi et al. 2005; Livnat et al.
2005]. Within this constellation of previous visualization research,
the work we describe here focuses on the interactive drill-down to
first compute then display network connection statistics using his-
tograms that show levels of activity satisfying user-defined query
conditions to implement knowledge discovery and hypothesis test-
ing on large collections of network connection data.

While these previous works in network traffic visualization have
produced novel and useful presentation and interaction techniques,
they were tested using small amounts of network data. In contrast,
our work focuses on techniques suitable for use with large collec-
tions of network connection data. Our “filtering” is implemented by
efficient compressed bitmap indices designed for rapid data mining
of realistic-sized datasets.

2.2 Indexing and Querying
To search quickly through large amounts of network connection
data, we use bitmap indices [O’Neil 1987; Chan and Ioannidis
1998; Johnson 1999; Shoshani et al. 1999; Stockinger et al. 2000],
an indexing structure optimized for read-only data. Bitmap indices
are well suited for use in indexing and querying network connection
data, which is typically not modified once stored. Bitmap indexing
has been implemented in many commercial database systems. Its
efficiency is well accepted for low cardinality attributes. We re-
cently showed that bitmap indices are also efficient with high cardi-
nality attributes by using Word Aligned Hybrid coding (WAH) [Wu
et al. 2004]. FastBit [Scientific Data Management Group 2006]
is a research code that implements a number of different forms of
bitmap index compression, including WAH.

Network analysts usually explore network connection data itera-
tively and in an ad-hoc manner, i.e. the queries often do not fol-
low a predefined pattern. Moreover, queries are often complex and
contain several attributes (dimensions) like “Find all network con-
nection records where StartTime > 20050501 AND 10.102.0.0 <=
SourceIP <= 10.105.255.255.” Bitmap indices have a unique ad-
vantage over traditional tree-based indices for these kind of multi-
dimensional queries since the dimensions can efficiently be com-
bined without suffering from the “curse of dimensionality” [Bell-
man 1961].

2.3 Query-Driven Visualization
As data grows larger and more complex, building and using larger
and more scalable visualization systems simply produces a greater



amount of output, which in turn increases cognitive load on the
viewer without any explicit guarantee of an increase in potential or
actual insight. The goal of Query-Driven Visualization is to limit vi-
sualization processing and subsequent visual interpretation to data
that is deemed to be “interesting.”

Within the context of network traffic visualization and analysis,
many previous works include some notion of “data filtering” as
part of their knowledge discovery process. The OSU Flow-Tools
[Fullmer and Romig 2000], FlowScan [Plonka 2000] and SiLK
[Gates et al. 2004] all have command-line interfaces to filtering
utilities that find records matching a set of criteria. Filtering selec-
tion criteria include connection record variable values like source
or destination IP or port number, IP protocol, interface number, and
autonomous system number. For most of these systems, filtering
is performed using a sequential scan through flat files. The com-
putational complexity of such an approach is O(n) where n is the
number of connection records. SiLK uses a tree-like directory and
file hierarchy to partition data to accelerate searches.

Swift-3D [Koutsofios et al. 1999] is an integrated data visualization
and exploration system. It supports C-style query expressions that
are translated into C code, compiled into shared objects and dynam-
ically linked into the application. This approach offers flexibility
similar to that of awk and sed but with the speed of compiled code.
This particular work achieves high performance by using Direct-IO
to bypass the kernel, but does not appear to use any form of index-
ing to accelerate the search process. This approach is also O(n) in
computational complexity with respect to data size.

The VisDB system combines a guided query-formulation facility
with relevance-based visualization [Keim and Kriegel 1994]. Each
data item in a dataset is ranked in terms of its relevance to a query,
and the top quartile of results is then input to a visualization and
rendering pipeline. Data is presented in a way to cluster more rel-
evant items closer together, and less relevant items further apart. It
is especially well-suited to display the results of “fuzzy queries” in
that inexact matches are ranked and visually displayed in a way to
convey relevance. This approach results in O(n) complexity.

The TimeFinder system described in [Hochheiser and Shneiderman
2001] supports interactive exploration of time-varying data sets by
providing the ability to quickly construct queries, modify parame-
ters, and visualize query results. The query results are presented in
a fashion that implements a form of data mining – more detailed
information about the items satisfying the query are presented in
a separate window. TimeFinder reads all data into memory and is
therefore able to operate on only modest-sized datasets. Again, the
complexity of this filtering approach is O(n).

2.4 Our Contribution

The notion of coupling visualization with high performance in-
dex/query technology was introduced in [Stockinger et al. 2005b].
We showed that the computational complexity of visualization pro-
cessing can be constrained to the number of items returned by a
query. As such, that approach is the most suitable for use in query-
driven visualization and analysis of very large multi-dimensional
datasets. Those principles were subsequently applied to rapid net-
work traffic analysis in [Bethel et al. 2006].

The work we present in this paper extends that of both [Stockinger
et al. 2005b; Bethel et al. 2006] in two key ways. First, the itera-
tive data mining queries rely on a new family of parallel algorithms
for building two-dimensional conditional histograms. We study the
design and implementation of these novel parallel algorithms and
provide a detailed performance characterization. Second, we ap-
ply these new histogramming algorithms to a 42-week collection

Algorithm Explanation
BAQ Bin-A-Query: use a query to count the

number of records in a bin
LAQ Line-A-Query: use a query to filter

the right data for a column of the
multi-dimensional histogram

RAQ Rectangle-A-Query: use a query to filter the
right data for a rectangular subset of the
multi-dimensional histogram

FEP Filter-External-Partitions:
- filter the externally partitioned records
- count each partition separately
- accumulate the results

Table 1: A summary of the conditional histogram algorithms.

of network connection data to detect and characterize distributed
scans.

3 Parallel Conditional Histogram Algorithms

In our previous work [Bethel et al. 2006] we used a simple paral-
lelization strategy for building conditional histograms. In this paper
we introduce three parallelization strategies for building conditional
histograms that offer significantly improved performance compared
to our initial algorithm. These new algorithms achieve better per-
formance by eliminating redundant work and leveraging the regular
structure of the histograms to streamline the process of computing
histogram bin values. One key idea of these novel algorithms is
to use automatic task or data parallelism for populating histogram
bins.

First, we provide a running example for motivating the problem of
conditional histograms. Then we discuss the initial parallelization
strategy that we used in [Bethel et al. 2006]. Next, we provide
a detailed description of the three novel parallelization algorithms
for building 2D conditional histograms.

3.1 Running Example

To simplify the description of the algorithms, we use an example
where we compute a simple two-dimensional (2D) histogram. As-
sume that each histogram dimension (variable) is binned separately.
Further, assume that the overall histogram is defined on bins formed
by the cross product of the two one-dimensional bins. We denote
the two variables as A and B. Next, we denote the number of bins
for A as nA and the number of bins for B as nB. Finally, the his-
togram is built by computing the number of records that fall in each
of the nAnB bins.

The following is a specific 2D histogram example that we will use
throughout this section.

histogram DP:5000:6000:125, tsyday:127:183:7
where (state == 1) and (12 <= tshour < 14)

The given example contains a bin specification in the first line
and a set of external conditions in the second line. The bin
specification is defined by the triple < lowerBinBoundary :
upperBinBoundery : binWidth >. In this example, the lower
bin boundary for the variable DP is 5000, the upper bin boundary is
6000 and the bin width of 125. Hence, the total number of bins for
variable DP is 8. Similarly, the bin boundaries for variable tsday
are 127 and 183, respectively. The bin width is 7. Again, the total
number of bins for variable tsday is 8.



3.2 Details of the Parallel Algorithms
First, we revise the original conditional histogramming algorithm in
our previous work [Bethel et al. 2006]. Next, we provide a detailed
description of three novel conditional algorithms. The names of
these algorithms and their brief descriptions are given in Table 1.

In the discussion that follows, we are addressing task and data de-
composition alternatives for each of the four algorithms. The soft-
ware performs automatic parallelization on behalf of the calling ap-
plication and significantly affects the overall performance. With
respect to automatic parallelization, each of these algorithms will
partition the data or tasks for the running example query in different
ways. One of the algorithms, BAQ, can compute histograms using
only the query capability of FastBit. The other three algorithms –
LAQ, RAQ, FEP – use a combination of FastBit query capabilites to
first select a set of records appropriate for a particular data decom-
position, then use a second-phase algorithm to compute histogram
subsets using raw data records. We take such an approach for the
LAQ, RAQ and FEP algorithms after having observed substantial
processing time in BAQ that appears to be due to redundant work
associated with query processing.

The BAQ, LAQ and RAQ algorithms are all task parallel, while
the FEP algorithm is data parallel. In the task parallel family of
algorithms, each PE will fill a histogram bin or bin range; each PE
will operate on the complete dataset to complete its work task. In
the data parallel algorithm, each PE is computing all histogram bins
on a subset of the data.

For the task parallel algorithms, we store each variable’s raw data
in a separate file. Additionally, each variable’s bitmap index is also
stored in a separate file. If there are V variables, then there would
be 2V files. For the data parallel algorithm, each variable’s raw
data and associated bitmap indices are stored in p separate files
where p is the number of PEs. Each of the p data files contains
approximately the same amount of data. Therefore, if there are V
variables and p PEs, there are a total of 2V p files. Our performance
experiments are conducted on an SMP platform so all PEs have
access to a single, fast filesystem.

3.2.1 Algorithm Bin-A-Query (BAQ)

The BAQ algorithm uses only the query capability of FastBit to
compute histograms. It builds a query for each bin to count the
number of records that fall in the bin. Take the above example
of filling a 8x8 histogram for DP and tsyday. The conditions for
each query are the combination of the external conditions and the
boundaries of the bins. For example, the first bin would have DP in
the range of 5000 and 5125, and tsyday in the range of 127 and
134. The query to fill the first bin would be:

select count(*) where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 5125) and (127 <= tsyday < 134).

Similarly, for a bin with DP between 5125 and 5250 and tsyday
between 134 and 141, the query would be:

select count(*) where
(state == 1) and (12 <= tshour < 14) and
(5125 <= DP < 5250) and (134 <= tsyday < 141).

In this case, a total of 64 queries are executed to compute an 8x8
histogram. If we a assume a parallel computer with 4 PEs, each PE
executes 16 queries as illustrated in Figure 1(a). Since these queries
can be executed independently, this algorithm is easily parallelized.

However, one inefficiency we see in this approach is that it executes
an excessive number of FastBit queries: Since each query evaluates
the external conditions ((state == 1) and (12 <= tshour <

Figure 1: A schematic diagram depicting how algorithms BAQ and
LAQ compute a 2D conditional histogram.

14)) independently, this approach performs redundant work and
could thus be inefficient. The remaining algorithms – LAQ, RAQ
and FEP – can be viewed as alternative strategies to reduce these
repeated evaluations of the external conditions.

3.2.2 Algorithm Line-A-Query (LAQ)

The LAQ algorithm uses a filtering capability to compute the his-
togram with less queries than BAQ. In essence, LAQ slices a multi-
dimensional histogram into many 1D histograms. The basic idea of
LAQ is as follows: (1) use FastBit to find the records for all bins
in a 1D “slice” of a 2D histogram and (2) implement a counting
function for populating the respective bins.

Assuming that we choose to slice the above 2D histogram along DP
(see Figure 1(b)), the queries we use will select tsyday as output.
This will lead to 8 queries of the form:

select tsyday where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 5125) and (127 <= tsyday < 183).

select tsyday where
(state == 1) and (12 <= tshour < 14) and
(5125 <= DP < 5250) and (127 <= tsyday < 183).

...

In contrast to algorithm BAQ, LAQ needs to read part of the raw
data records in addition to reading the bitmap index. Because of
this additional access to raw data, we expect each LAQ query could
take more time than would be required in a BAQ approach. How-
ever, because the LAQ algorithm executes less queries overall, it is
possible it may perform better than BAQ. We discuss this issue in
more detail in Section 4.

After LAQ first uses FastBit to select the set of records that fall
within its 1D “slice,” it must next invoke its counting function to
compute all histogram bin values within the slice. The bulk of com-
putation in this function is to locate the right bin for each record
and increment the bin’s count. If the bins for tsyday are arbi-
trarily defined, we may need to use O(log(b)) time to place each
record to the right bin, where b denotes the number of bins. How-
ever, for bins specified with the triple < lowerBinBoundary :
upperBinBoundery : binWidth >, LAQ uses a simple com-
putation to determine in which bin a record falls. In this case, the
time needed to determine the bin for any data record is considered
to be constant since it does not depend on the number of bins, and
the time required to compute the 1D histogram is proportional to
the number of records FastBit selects for the 1D slice.



Figure 2: A schematic diagram depicting how algorithms RAQ and
FEP compute a 2D conditional histogram.

3.2.3 Algorithm Rectangle-A-Query (RAQ)

As in algorithm LAQ, RAQ first uses a FastBit query to filter a
subset of records and then uses a counting function to populate a
subset of bins of the final histogram. Whereas LAQ partitions the
2D histogram task space into 1D histogram slices, RAQ partitions
the task space into “tiles” or “rectangles” of smaller 2D histograms.
RAQ partitions the task space into as many rectangles as there are
PEs (see Figure 2(a)). In the implementation we present here, our
partitioning strategy aims to have all partitioned rectangles have the
same number of bins to evenly divide the tasks amongst PEs. Other
2D partitioning schemes could result in better load balance.

Assuming we are computing the above histogram on 4
PEs, we could partition the 64 bins into 4 rectangles
of 16 bins each, e.g., “5000 <= DP < 5500 and 127 <=
tsyday < 155,” “5000 <= DP < 5500 and 155 <= tsyday
< 183,” “5500 <= DP < 6000 and 127 <= tsyday < 155,”
and “5500 <= DP < 6000 and 155 <= tsyday < 183.” The
query for filtering the records that fall in the first rectangle is:

select DP, tsyday where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 5500) and (127 <= tsyday < 155).

The counting function to fill a multi-dimensional histogram needs
to place the incoming records into appropriate bins. Let us assume
that 2D bins are a cross product of bins for each 1D variable. Thus,
by determining in which 1D bin each variable falls, one can also de-
termine in which 2D bin a record falls. Given the bins are specified
using the triple < lowerBinBoundary : upperBinBoundery
: binWidth >, the time required by this basic histogram func-
tion is proportional to the number of records selected for each 2D
rectangle.

3.2.4 Algorithm Filter-External-Partitions (FEP)

An alternative to dividing the task according to the histogram bins
is to divide the data records among the PEs (see Figure 2(b)). In
the data parallel approach, each PE computes all histogram bins
for a subset of n/p data records, where n is the total number of
data records and p is the number of PEs. Finally all histogram
computations are combined with the final result.

In FEP, each PE executes a FastBit query to first filter the records
from a different data partition and then computes a set of partial
counts for every bin. A final step accumulates all the partial counts
for every bin from all PEs (result aggregation). Since this final step
is relatively simple, we would expect this approach to parallelize
well. Here, the external conditions are evaluated on each PE, but

on different subsets of records. Therefore, there is no redundant
evaluation of the external conditions with respect to a given parti-
tion of data. All PEs use the same query to filter the data records.
In our example, the query is as follows:

select DP, tsyday where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 6000) and (127 <= tsyday < 183).

FEP uses the same counting function is an algorithm RAQ to fill the
arrays of partial counts on each PE. The total cost of this counting
function is proportional to the number of records selected.

4 Run-Time Complexity
In this section we discuss the run-time complexity of the four par-
allel algorithms BAQ, LAQ, RAQ and FEP for building conditional
histograms. Let us briefly summarize the key ideas of the four par-
allel algorithms before we proceed with an in-depth analysis.

In Section 3 we showed that BAQ computes histograms using only
the query capability of FastBit. The other three algorithms – LAQ,
RAQ, FEP – use a combination of FastBit query capabilites to first
select a set of records appropriate for a particular data decomposi-
tion (record selection), then use a second-phase algorithm to com-
pute histogram subsets using raw data records (record counting).

We start our discussion with the algorithmic phase that is common
to all four algorithms. Then we will discuss the remaining algorith-
mic phases for LAQ, RAQ and FEP. The main thesis motivating our
development of these algorithms is:

• The cost of performing redundant queries for computing con-
ditional histograms exceeds the cost of eliminating redundant
queries by using FastBit queries to evaluate external condi-
tions and then compute the records that fall into particular
histogram bins.

4.1 Evaluate Query Conditions

From earlier analysis and timing measurements [Wu et al. 2004; Wu
et al. 2006], we know that the average query processing time is pro-
portional to the size of the bitmap indices. Since all queries in algo-
rithm BAQ involve the same set of attributes, we would expect the
total time to be proportional to the number of bins in the histogram.
For a typical 2D conditional histogram containing 100× 100 bins,
there are plenty of queries for a moderate size parallel system to en-
sure that each PE executes about the same number of queries (query
load balancing).

In terms of number of queries, algorithm BAQ evaluates nAnB
queries, LAQ evaluates nA (or nB) queries, RAQ evaluates p queries
(where p is the number of PEs), and FEP evaluates 1 query (dis-
tributed onto to p PEs). On a moderate size parallel machine where
nA > p, we would expect BAQ to use more time for processing
queries than LAQ; LAQ to use more time than RAQ; and RAQ to
use more time than FEP.

4.2 Record Selection

After algorithms LAQ, RAQ and FEP first use FastBit to select a
set of records that match the filtering criteria, each must next read
records from disk and then compute histogram bins. In this section,
we examine issues that may affect performance for our two different
partitioning strategies.

For our shared-memory implementation of the task-parallel algo-
rithms (BAQ, RAQ and LAQ), all PEs access the same set of files,
even though each PE reads a different set of record values. Because
RAQ and LAQ read records from the same set of files, it is likely



that some of the records read by different PEs will reside in the
same pages on disk. Since all disk I/O operations are performed
in pages internally, these pages would be read multiple times to
satisfy the read operations issued from different PEs. When using
more than one PE, LAQ and RAQ may require more time to read
the same set of record values than algorithm FEP due to redundant
disk page I/O.

Let us compare the read operations performed by LAQ and RAQ for
building d-dimensional conditional histograms. The first difference
is that LAQ reads the data records of only one variable while RAQ
reads d variables. This fact suggests that LAQ could spend less
time reading its data records. However, because the record values
are randomly selected from data files, the reading order may have
a substantial influence on the actual execution time. When reading
the same variable, algorithms LAQ and RAQ could read the same
record values. However, each algorithm performs these reads in a
different order through a different number of queries. In general,
reading these record values in a smaller number of queries will take
less time than reading them a larger number of queries. In order to
read the selected record values, LAQ executes a total of nA (or nB)
such queries while RAQ only executes p queries. In this perfor-
mance study we assume nA > p. Thus, we expect algorithm RAQ
to use less time to the read selected record values than algorithm
LAQ.

For most conditional histograms we expect that the selected records
are randomly scattered throughout the dataset. In this case, algo-
rithm RAQ would show relatively small changes as the number of
PEs p increases for the following reasons: (1) Since all PEs perform
the same evaluation of external conditions, this part of the query
time is unlikely to reduce as the number of PEs increases. (2) Like-
wise, the I/O time for retrieving the records might also not change
significantly due to I/O contention of simultaneous disk page ac-
cesses. In contrast, the query response time for LAQ would de-
crease as each PE works on fewer number of 1D histograms. On
a single PE, we may see LAQ to take longer than RAQ, but as the
number of PEs increases, LAQ may catch up with RAQ.

With the data parallel algorithm (FEP), there are no issues with re-
spect to read contention or redundancy since all PEs are reading
different data from different files.

4.3 Record Counting

Finally we discuss the time required for counting the number of
records per bin. Remember that the total number of records to be
counted for a conditional histogram is defined by the external con-
ditions, and is the same for all algorithms. The procedure used to
locate the bin for each record value is also the same. The time
required for the counting functions after the variables have been
read into memory is proportional to the number of records and the
number of variables. LAQ, RAQ and FEP work on the same to-
tal number of records. However, LAQ only selects and counts one
variable while RAQ and FEP select and count two variables in our
example. We expect that RAQ and FEP would spend nearly twice
as much time as LAQ on the counting functions. However, because
the counting functions operate on in-memory data, the total time
spent in these functions may be relatively small.

In summary, we expect algorithm BAQ to be the slowest because
it performs considerable amount of redundant work. We expect
algorithm RAQ to be the fastest on a single PE, and algorithm FEP
to be the fastest on multiple PEs.

5 Performance Study
In this section we evaluate the performance of four parallel algo-
rithms for building conditional histograms. All experiments were

executed on a 32-processor SGI Altix with 192GB of RAM and
40TB of fiberchannel RAID. Because of its large amount of mem-
ory and substantial I/O performance rates, this platform is well
suited for data intensive analysis and visualization tasks.

5.1 Data Characteristics
The data set consists of 42 weeks’ worth of network connection data
that was collected by Bro [Paxson 1998] at NERSC (National En-
ergy Research Scientific Computing Center, Berkeley Lab). There
are 2.5 billion records, each with 22 attributes such as source and
destination IP addresses, source and destination ports, start time,
duration, number of bytes sent along with additional network con-
nection information. All the data is stored in raw binary for-
mat. This data set is more than two times the size that we used
for our initial experiments for the SC05 HPC Analytics Challenge
[Stockinger et al. 2005a]. In order to increase query efficiency, we
have split IP addresses into their historical A, B, C and D octets.
The total size of the data set is 281GB.

Figure 3: Network traffic data collected at NERSC.

Figure 3 shows the network traffic that was collected at NERSC be-
tween August 2004 and June 2005. We can see a significant traffic
increase before Supercomputing 2004.

For each of the 22 attributes we built an equality-encoded bitmap
index with WAH bitmap compression [Wu et al. 2004]. The size
of the bitmap indices is 78.6GB, which is less than a third of the
raw data. This size is fairly modest compared with B-tree-based
indices, which are on average three to four times the size of the raw
data.

For our benchmarks we experimented with two different kinds of
data partitioning strategies. First, we stored the values of each at-
tribute in a single large file. In total, we have 22 files (one file per
attribute). We call this case the contiguous data set. Next, we di-
vide the data into 32 partitions (one per PE), where each partition
consists of about the same number of data records (partitioned data
set).

Figure 4 shows the total sizes of the WAH compressed bitmap in-
dices for the 32 partitions. Even though each data partition contains
the same number of records, the sizes of the compressed bitmap in-
dices vary. This variance is due to the fact that the access patterns
in the network traffic varies. As we saw in Figure 3, there was an
increase in network traffic intensity a few weeks before Supercom-
puting 2004. Since traffic in that week is more homogenous than the
traffic during the rest of the year, the bitmap indices compress better
for that part of the data. We observe that an even data partitioning
strategy based on the number of records does not necessarily result
in evenly sized indices.



Figure 4: Size of the compressed bitmap indices for 32 partitions.
Each partition contains 22 bitmap indices (one per data attribute).

5.2 Parallel Histogramming Performance

In our first set of experiments we evaluated a multi-dimensional
query for producing 2D conditional histograms. This query is typi-
cal for studying the hosts that were contacted over a certain period
of time. The query we used for our performance benchmarks is as
follows:

Histogram 1:
plot histogram DP:1000:11000:100,

tsyday:50:350:3
where (state == 1) and (12 <= tshour < 14)

This query looks for unsuccessful connections (state==1) within the
time window of 12:00 and 14:00. DP:1000:11000:100 refers to
destination port in the range [1000;11,000) with a step size of 100.
tsyday:50:350:3 refers to the time stamp given in days with the
range [50;350) and a step size of 3. As one can easily calculate
from the ranges and the step sizes, the number of histogram bins
for both attributes is 100.

The time to evaluate the query with our four parallel algorithms
is shown in Figure 5. The graph shows the performance of these
four algorithms with up to 32 PEs. This query selects about 28
million records out of 2.5 billion, corresponding to a selectivity of
about 1%. Algorithm RAQ shows the best performance on one PE.
For two PEs and greater, algorithm FEP is the winner. Note that
algorithms BAQ, LAQ and RAQ operate on the contiguous data set
whereas algorithm FEP operates on the partitioned data set.

Let us now analyze algorithm FEP in more detail. We can see that
it shows nearly linear scalability. One of the reasons for not ob-
serving optimal scalability for algorithm FEP is that the sizes of the
compressed bitmap indices for each data partition vary – the bitmap
compression algorithm performance is strongly correlated with the
data distribution statistics [Wu et al. 2004]. Since the network ac-
cess patterns change over time, we expect that some parts of the
data compress better than others as can be seen in Figure 4.

Next, we varied the query condition to study the impact of the num-
ber of result records on the performance of the algorithms. In par-
ticular, we varied the time window of the query in the following
way:

Figure 5: Processing time for conditional 2D histogram over 2.5
billion records with up to 32 PEs. The query condition is (state ==
1) and (12 ≤ tshour < 14). Note the log-scale on both the x and y
axes.

Histogram 2:
plot histogram DP:1000:11000:100,

tsyday:50:350:3
where (state == 1) and (13 <= tshour < 14)

Histogram 3:
plot histogram DP:1000:11000:100,

tsyday:50:350:3
where (state == 1) and (11 <= tshour < 15)

The number of result records for Histogram 2 is 12.6 million (which
is half of the number of result records of Histogram 1). The num-
ber of result records for Histogram 3 is 54.6 million (double the
size of the result records of Histogram 1). The performance for
building these conditional histograms is shown in Figure 6. Since
algorithm BAQ turned out to have the worst performance across all
experiments, we only plot the results for algorithms LAQ, RAQ and
FEP. We can observe that the absolute run time of the algorithms
changes slightly with the number of result records. However, the
relative performance of the three algorithms stays the same. Again,
algorithm FEP is the overall winner.

To determine if FEP’s “tail off” in parallel performance with in-
creasing numbers of PEs is due to I/O limits, we next conduct an
experiment comparing FEP with a sequential data scan. If the se-
quential scan becomes I/O bound, its relative performance improve-
ment will also begin to degrade with increasing parallelism. The
performance results of the sequential scan and FEP are shown in
Figure 7. For the sequential scan, we read the four attributes that
are contained in Histogram 1, namely DP, tsyday, tshour and state.
Each attribute is stored in a separate file with 32 equally sized par-
titions. We observe that the parallel sequential scan performance
indeed scales linearly, but algorithm FEP shows a slight decrease in
performance improvement with increasing parallelism. This result
indicates that the sequential scan has not become I/O limited at 32-
way parallelism since its relative performance improvement does
not degrade. We conclude that FEP, which is performing less I/O
than a sequential scan, is not I/O bound at this level of parallelism
on our experiment’s computing platform. We see that the query re-
sponse time of algorithm FEP is, on average, a factor of 10 faster
than the sequential scan.



(a) Result records: 12.6 million.

(b) Result records: 54.6 million

Figure 6: Processing time for conditional 2D histogram over 2.5 bil-
lion records for up to 32 PEs with various numbers of result records.
Note the log-scale on both the x and y axes.

Finally, we compared the performance of algorithm FEP with
ROOT (developed at CERN) and ROOT-FastBit [Stockinger et al.
2006]. We have chosen ROOT since it is currently one of the most
powerful database systems used in production for scientific data
management analysis. For instance, that Babar [Experiment 2006]
experiment at the Stanford Linear Accelerator Center stores nearly
up to one Petabyte of data in ROOT. Recently we also integrated
FastBit into ROOT so that we can perform a direct comparison of
the conditional histogramming capabilities.

Figure 8 shows the performance of two different kinds of his-
togramming algorithms in ROOT. One uses ROOT’s internal pro-
jection indices [O’Neil and Quass 1997], the other one uses FastBit
indices. We observe that ROOT has nearly optimal scalability for
up to 32 PEs in this study. ROOT-FastBit and algorithm FEP both
scale well up to 16 PEs with a marginal performance penalty for 32
PEs. However, algorithm FEP is, on average, a factor of 3 faster
than ROOT-FastBit.

Figure 7: Processing time for conditional 2D histogram over 2.5
billion records for up to 32 PEs. Note the log-scale on both the x
and y axes.

Figure 8: Processing time for conditional 2D histogram over 2.5
billion records for up to 32 PEs. Note the log-scale on both the x
and y axes.

6 Network Connection Analysis Case Study
It is common for attackers to use sets of previously compromised
hosts to collectively scan a target network. This form of attack,
known as a “distributed scan,” is typically accomplished by divid-
ing the target address space up amongst a group of ‘zombie’ ma-
chines and directing each zombie to each scan its portion of the
target network. The term ‘zombie’ refers to a computer system
that has been enslaved for the purpose of carrying out some action,
typically malicious. The scan results from each zombie are then ag-
gregated at a master host thereby creating a complete picture for the
attacker. An example attack is a search for unsecured network ser-
vices on a given port or port range. Identifying sets of hostile hosts
under common control is helpful in that the group of hosts can be
blocked from access to critical infrastructure, and the group can be
reported to the larger community for further analysis or action.

The initial indication of a security incident typically comes from a
source other than data mining, e.g. an email alert, an IDS alert, or a
phone call from a colleague at another institution. For example, we



might receive an email indicating that a new vulnerability has been
publicized, affecting a network service that listens on a particular
TCP port. We can then examine historical data to see if there is ev-
idence of malicious activity targeting this port – this activity could
well be an indication of an attacker with pre-publication knowledge
of the vulnerability.

In the discussion that follows, we implement a sequence of data
mining steps aimed at detecting a distributed scan and identifying
the set of remote hosts participating in the scan. The target net-
work is of “class B” size, meaning it contains 65536 unique IP ad-
dresses covering the full range of [0;255] in both the C and D octets
(the target network in this case is identified by its unique values in
the A and B octets). We use a custom visual analytics application
that combines a GUI for constructing complex multi-dimensional
queries, FastBit for answering the queries, and OpenRM Scene
Graph [R3vis 1999-2006] for performing visualization and render-
ing. In our analysis, we first determine the temporal characteristics
of the distributed scan, then identify the set of remote hosts partici-
pating in the scan.

6.1 Understanding Temporal Characteristics
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Figure 9: Unsuccessful connection attempts to port 5554 over a 42-
week period are shown here in histogram form. While the source
data is sampled at per-second resolution, we created this histogram
by posing a query requesting the number of connection attempts
over a 24-hour time window: each histogram bin is one day wide.
We see “similar behavior” in the region around day 247, where
“similar behavior” in this case is characterized by the number of
connection attempts. Each histogram bar is color-coded according
to the number of standard deviations from the mean. Green bars are
“close to” the mean number of connections, while red bars indicate
bins having count values that are about three standard deviations
from the mean number of counts.

Figure 9 is a histogram showing daily counts of unsuccessful in-
coming TCP connections directed at port 5554 over a 365 day pe-
riod. The data set contains 42 weeks of data – the “missing” 10
weeks are visible as a gap in the middle of the histogram. Note the
large counts on days 247 and 290 visible as tall red spikes. Note
also that around day 247 there is a consistent increase in daily ac-
tivity, as evidenced by similar levels of daily connection counts.
The activity on day 290 appears different, since there appears to
be a large increase in scanning activity – possibly indicating a new
scanning tool or technique. The activity surrounding day 247 ap-
pears at first glance to be careful work over time by a set of hosts,
whereas the day 290 is likely a single host scanning at a very high
rate with the intent to ‘get in and get out’ before its presence can
be detected and its access blocked. Such high speed scans are quite
common, and are often the reconnaissance phase of a larger attack
mechanism, or a combined scan and attack tool. We choose to fo-
cus on the 4-week period around day 247, where there is evidence
of temporally regular and systematic suspicious activity as shown

in Figure 10. In contrast, Figure 11 shows a histogram of suspi-
cious activity sampled at one-hour intervals over a two-day period
around day 290. The access patterns visible in Figure 10 are much
different than those in Figure 11.
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Figure 10: This histogram shows the per-hour number of unsuc-
cessful connection attempts over a four-week period around day
247.
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Figure 11: This histogram shows the per-hour number of unsuc-
cessful connection attempts over a two-day period around day 290.

Figure 10 shows the four-week period surrounding day 247 with
finer granularity in time – this histogram shows connection counts
at hourly resolution. We can see that the activity is temporally peri-
odic, with a period of approximately one day, repeating for twenty-
one days. We will therefore direct our analysis toward the activity
over this 21-day period.

We drill into the data at a finer temporal resolution; by posing a
query that requests counts of per-minute unsuccessful connection
attempts over a five-day period within the four-week window. The
histogram, which is depicted in Figure 12, shows a distinct pat-
tern of increased activity on a precise 24-hour interval. This image
shows a spike in activity occurring at about 21:15:00 local time each
day. Each such primary spike is followed by a secondary spike that
occurs about 50 minutes later. Each of the top five spikes is labeled
on the bottom of the figure with the raw Unix timestamp and the
number of connection attempts at that time.

At this point, we conclude that an organized scanning event is oc-
curring daily at 21:15 local time within a four-week window of our
42-week dataset. While there also appears to be a secondary event
occurring about 50 minutes later within the same four-week period,
for the rest of this analysis we will focus only on the event occurring
at 21:15 in order to simplify the method that we are presenting. We
refer to the seven-minute window during which the daily scanning
event occurs as the “event horizon.”

So far, our analysis has focused on understanding the temporal char-
acteristics of the attack. Next, we take a different approach in look-
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Figure 12: This histogram shows the number of unsuccessful con-
nection attempts to port 5554 over a five-day period of time sampled
over one-minute temporal windows. The histogram indicates a re-
peating pattern of a spike in unsuccessful connection attempts that
occurs on a twenty-four hour interval. Each spike is followed by a
secondary, smaller spike fifty minutes later.

ing at the coverage of the target network by the attack. As shown in
Figure 13 we create a 3D histogram where two of the axes are the
C and D octets of the destination address space and the third axis is
time. The range of the IPRC and IPRD axes is [0;255], which cor-
responds to the complete range of addresses in the target network.
The range of the time axis, labeled ts, is a two-hour period within
the larger time window of interest sampled at a one-minute granu-
larity. The resulting histogram has 256 by 256 by 120 “bins” that
contain the number of connection attempts on port 5554 for each
destination (C,D) address within a one-minute time window. Each
point in Figure 13’s 3D scatterplot is color-coded by the number
of connection attempts at each destination address. Points in blue
indicate a single connection attempt; points in green represent two
connection attempts and indicate an overlap in target address space
amongst the attacking hosts. Outside of the “sheet-like” structures,
we see an occasional scan through a sequence of D octet values.

In Figure 13, we see coarse structures that approximate “sheets.”
Each sheet represents a nearly complete scan of the target network,
and each corresponds to some pair of large spikes visible in Figure
12. Were we to broaden the time window in Figure 13 to include
the entire time range of Figure 12, we would see the “sheet” struc-
ture repeat over and over again. We focused on a specific two-hour
window to look at the fine-level time/address structure that might
not be visible with a coarser temporal view. For the sake of com-
pleteness, Figure 14 shows a 1D histogram over the same two-hour
window sampled at one-minute intervals. The “spikes” in Figure 14
correspond to the temporal location of the “sheet-like” structures in
Figure 13.

Drilling into the data at a finer resolution, Figure 15 shows a his-
togram of unsuccessful connection attempts over a seven-minute
window at one-second temporal resolution. At this fine temporal
resolution – the maximum possible with this particular dataset – we
see the sharp spikes in the one-minute resolution histogram from
Figure 12 is a distribution that spans approximately two minutes
from about 21:14 to 21:16 PST.

6.2 Discovering Attacking Host IP Addresses
The next step in the analysis is to determine the source addresses of
the attacking hosts. We will use an iterative approach in which we
first identify the A octet of an attacking host’s address followed by
the B, C and D octets.

We construct a complex multi-dimensional query that aims to an-
swer the following question: over the event horizon, how many
hosts for each value in the A octet attempt to connect to all destina-

Figure 13: Focusing on a two-hour window using a one-minute
temporal resolution, we generate a histogram showing the number
of connection attempts across all (C,D) addresses of the target ad-
dress space. Two of the axes are all addresses within each of the C
and D octets of the target address space. The third axis is time over a
two-hour window sampled over one-minute windows. The “sheet-
like” structures correspond to a pair of temporally close spikes in
Figure 12.
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Figure 14: A 1D histogram of connection attempts over a two-hour
time period at a one-minute temporal resolution. The spikes in this
image correspond to the temporal location of the “sheets” visible in
Figure 13.

tion C octets during each scanning event? Each call to the 2D his-
togram query function asks for the number of unsuccessful connec-
tion attempts from each source A octet to each destination C octet
within a one-second time window. We perform one such query for
each of the 420 seconds within the event horizon. The results of
these queries are presented in Figure 16.

Figure 16 contains two different views of a 3D histogram along
with a related 1D histogram. The 1D histogram shows the number
of unsuccessful connection attempts from all A octets for each daily
event time horizon over the total event time horizon. In the 3D his-
togram views, one axis is the destination C octet space, another is
the source A octet space. Time in both views corresponds to the ver-
tical axis with earlier time being at the bottom of the histogram im-
age. We draw several conclusions from Figure 16. First, it appears
that most of the organized activity is originating from within three
specific A octets. Interestingly, there are three highlighted spikes
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Figure 15: By increasing the temporal resolution, we see in this his-
togram having per-second resolution over a seven-minute window,
the sharp spikes in previous images reflect activity that occurs over
about a two-minute period.

visible in the 1D histogram of Figure 16 corresponding to high lev-
els of suspicious traffic across all A-octet addresses. Second, we
characterize “organized” traffic in this image as a systematic pro-
gression through the destination C octet space over time. The top
left panel of Figure 16 clearly shows slanted line segments where
the destination C octet changes as a function of time. Based upon
these images as well as other output from the visual analytics ap-
plication (not shown here), we conclude that most of the attacking
traffic originates from the A octet 220, but there are also significant
levels of traffic from the A octets 60, 61, 211, 218, 221 and 222
that exhibit correlating characteristics, namely time and duration of
activity.

We next perform an iterative sequence of steps that converge
on completely identifying the full address of all attacking hosts.
Whereas the query producing the data for Figure 16 aims to iden-
tify the source A octets, the next three steps in the analysis each
identify the B, C and D octets of the complete IP address of all at-
tacking hosts. Each step uses information from the previous step so
that by the time we mine data for the source D octets, we are using
results from previous steps that identified the A, B, and C octets. At
the end of these steps, we identified a total of twenty IP addresses
that appear to be part of a distributed scan.

Using those twenty IP addresses, we next compute a “coverage
map” showing the destination C and D octets for each zombie host.
The result is Figure 17.

7 Conclusions

This paper emphasizes the importance of a multi-disciplinary ap-
proach in large-scale analytics. By combining state-of-the-art sci-
entific data management technology – efficient compressed bitmap
indices – with simple yet effective visualization in a visual analytics
and data mining application, we demonstrate using the combination
to detect distributed scans in 42-weeks worth of network connec-
tion data. Since the visual analytics application focuses on generat-
ing and displaying multi-dimensional conditional histograms, this
paper includes a discussion of the performance characteristics of
a new family of algorithms for quickly producing one- and two-
dimensional histograms from bitmap indices. While the context of
our presentation is on a cybersecurity application, the techniques
and technology are sufficiently general to be applicable to a wide
range of data analysis and mining topics in science, engineering,
medicine, business and security.
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Figure 16: The top two panels are different views of the same 3D
histogram showing the number of connection attempts to destina-
tion C octets from source A octets over a seven-minute window at
a one-second granularity for a periodic event occurring on 9/9/04.
“Organized” behavior is visible in the top left panel as line seg-
ments that systematically probe destination C octets. The start of
the scanning event is visible as the sudden increase in activity in the
bottom one-third of the top-left image. The bottom 1D histogram
shows the number of connection attempts from all source A octets
regardless of the destination C octet.
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