
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Allen R. Sanderson · Miriah D. Meyer · Robert M. Kirby · Chris R. Johnson

A Framework for Exploring Numerical Solutions of Advection-
Reaction-Diffusion Equations Using a GPU-Based Approach

Received: date / Accepted: date

Abstract In this paper we describe a general purpose, graph-
ics processing unit (GP-GPU)-based approach for solving
partial differential equations (PDEs) within advection-reaction-
diffusion models. The GP-GPU-based approach provides a
platform for solving PDEs in parallel and can thus signif-
icantly reduce solution times over traditional CPU imple-
mentations. This allows for a more efficient exploration of
various advection-reaction-diffusion models, as well as, the
parameters that govern them. Although the GPU does im-
pose limitations on the size and accuracy of computations,
the PDEs describing the advection-reaction-diffusion mod-
els of interest to us fit comfortably within these constraints.
Furthermore, the GPU technology continues to rapidly in-
crease in speed, memory, and precision, thus applying these
techniques to larger systems should be possible in the fu-
ture. We chose to solve the PDEs using two numerical ap-
proaches: for the diffusion, a first-order explicit forward Eu-
ler solution and a semi-implicit second order Crank-Nicholson
solution; and, for the advection and reaction, a first-order ex-
plicit solution.

The goal of this work is to provide motivation and guid-
ance to the application scientist interested in exploring the
use of the GP-GPU computational framework in the course
of their research. In this paper, we present a rigorous com-
parison of our GPU-based advection-reaction-diffusion code
model with a CPU-based analog, finding that the GPU model
out-performs the CPU implementation in one-to-one com-
parisons.

1 Introduction

Advection-reaction-diffusion has been widely applied to solve
transport chemistry problems in scientific disciplines rang-
ing from atmospheric studies [28], through medical science
[29], to chemo-taxis [12]. Turing’s original paper published
in 1952, “The chemical theory of morphogenesis”, is the
best-known discussion [27]. In this paper, Turing describes a

Scientific Computing and Imaging Institute, University of Utah. E-
mail: {allen,miriah,crj,kirby}@sci.utah.edu

system that both reacts and diffuses, reaching (under certain
circumstances) a dynamic equilibrium where a stable spot-
like pattern forms. Turing’s spot pattern has been widely
replicated because of its simplicity and ease of implementa-
tion. Over the years, this work has been expanded in a vari-
ety of fields by Belousov, Prigogine, Zhabotinsky, Mienhart,
Gray-Scott, FitzHugh-Nagumo, and many others [9].

Our goal in studying advection-reaction-diffusion mod-
els is to create spatio-temporal patterns that can be used for
texture synthesis [24] and the visualization of vector fields
[23]. We also want to create a system that can be used by
chemists in their analysis of reaction-diffusion models, such
as those being investigated in [32]. Figure (1) provides ex-
amples of some of the patterns formed using reaction-diffusion
models that meet these goals. Our research focuses on a class
of advection-reaction-diffusion models that can be computed
using finite difference techniques, and that can also be solved
using relatively simple first and second order numerical inte-
gration techniques, such as a forward-Euler or Crank-Nicholson.

Fig. 1 Three examples of reaction-diffusion patterns for texturesyn-
thesis (left), vector field visualization (center), and nonlinear chemical
dynamics (right).

There are numerous characteristics of the advection-reaction-
diffusions models that make analysis difficult. One such prop-
erty is the nonlinearity of the reaction functions, which cause
the tuning of the parameter values that drive the models to-
ward stable pattern formation difficult. Another challenging
characteristic is the sensitivity of the numerical techniquesto
these tunable parameters. For instance, what begins as a sta-
ble numerical integration may itself become unstable, forc-

2 Allen R. Sanderson et al.

ing the researcher to restart the simulation using different
integration parameters. Even when a researcher has success-
fully adjusted all of the necessary parameters, solving the
associated PDEs can be time consuming. All of these chal-
lenges taken together have led us to seek a system that will
allow a researcher to easily change parameters and quickly
solve a series of PDEs in order to more effectively askwhat
if questions.

To create an interactive advection-reaction-diffusion sys-
tem, our research focuses on significantly reducing the PDE
solution time. Researchers have traditionally taken advan-
tage of the finite difference discretization to solve PDEs in
one of two ways in order to achieve such computational ac-
celerations: either in parallel on multiple processors using
the message passing interface (MPI) or parallel compilers,
such as F90; or through multi-threaded methods on shared
memory architectures.

1.1 Graphics Processing Units for General Processing

More recently, researchers seeking computational accelera-
tions have turned to Graphic Processing Units (GPUs). Sim-
ilar to the math co-processors of yesterday, GPUs are spe-
cialized add-on hardware that can be used to accelerate spe-
cific graphics-related operations. GPUs are parallelized and
currently operate on up to 128 single-instruction-multiple-
data (SIMD) instructions (the exact number is proprietary),
providing a parallel desktop work environment for users of
Linux, OS X, and Windows. Furthermore, the speed increase
of each new generation of GPUs is out-pacing Moore’s Law,
one standard measure of performance increase of CPUs. These
reasons have led GPUs to become popular for general paral-
lel computing [19].

The conveniences and advantages of using a GPU, how-
ever, do not come without a cost. GPUs require researchers
to think outside their normal paradigms because the hard-
ware is optimized specifically for computer graphics oper-
ations rather than for general purpose processing. Thus, re-
searchers using GPUs for general processing (GP-GPU) must
understand the graphics processing pipeline (i.e. OpenGL
[31]), and how to adapt it for general processing [19].

The GPU further differs from the math co-processor in
that it works autonomously from the CPU. As such, the data
must be packaged up and specialized computational algo-
rithms written before shipping these pieces off to the GPU
for processing. Although there exists high level coding lan-
guages that can help in these tasks, such as the OpenGL
shading language [4], Cg (C for graphics) [10], and Direct3D’s
HLSL [2], a graphics API must still be used for handling
the data, such as OpenGL [31] or Direct3D. For our imple-
mentation we have chosen to use the OpenGL and Cg APIs
because they offer portability to multiple platforms, unlike
Direct3D which is available only under Windows. At the
same time, there has been considerable research into stream-
ing programming languages for the GPU, such as Brook [1],
Scout [21], Sh [20], and Shallows [5] that attempt to hide

the graphics pipeline altogether. However, at the time of this
writing, these new languages are either not publicly avail-
able (Scout), are experimental (Brook and Shallows), or are
no longer being supported and being replaced with a com-
mercial product (Sh). There is also NVIDIA’s recently an-
nounced compute unified device architecture (CUDA) tech-
nology, which provides a “C” like development environment
[3].

Another drawback to using the GPU for general purpose
processing is the limited memory and the floating point pre-
cision currently available on the hardware. Today’s com-
modity level GPUs have at most 512MB of memory and
only support up to 32-bit non-IEEE floating point precision
data (64 bit precision has been announced by some manufac-
turers but is not yet available). While these constraints make
the GPU not yet practical for solving large-scale, highly pre-
cise engineering simulations, the problems typically inves-
tigated by scientists exploring advection-reaction-diffusion
models, such as [32], fit well within the current GPU ca-
pabilities. These computations provide stable solutions in
the Lyapunov-sense [25] — that is, under small amounts of
noise the patterns remain the same. Also, advection-reaction-
diffusion problems are second-order PDEs, making them pro-
totypical of parabolic (diffusion dominant) and hyperbolic
(advection dominant) PDEs.

Thus, advection-reaction-diffusion problems provide an
ideal test bed for comparing and contrasting CPU- and GPU-
based implementations for real-world scientific problems.
The computational experiments described in this paper also
provide an indication of the future possibilities for using
GPUs for large-scale scientific computing as the evolution
of the GPU continues to increase in speed, memory, and pre-
cision.

1.2 Related Work

A review of the literature shows that among the first to ex-
plore the use of GP-GPUs for advection were Weiskopf et
al. [30], while some of the earliest work computing non-
linear diffusion on a GPU was proposed by Strzodka and
Rumpf [26]. Harris et al. [13] presents a method for solving
PDEs using GP-GPUs, including a reaction-diffusion sys-
tem that utilizes an explicit Euler scheme requiring one pass
per data dimension. Lefohn et al. [17] builds on this ap-
proach for solving PDEs associated with level sets. Kruger
et al. [16] and Bolz et al. [7] propose more general ma-
trix solvers, ranging from sparse to conjugate gradient meth-
ods, applying the solvers to simple Navier-Stokes simula-
tions and other examples. The closest related work to our
own is that of Goodnight et al. [11], who implement a multi-
grid solver while discussing various implementation strate-
gies, including a cursorary comparison of their GPU imple-
mentation with a CPU analog. Our work combines aspects
of each of these proposed ideas to create PDE solvers for
advection-reaction-diffusion systems using GPUs, while at
the same time, preforming a rigorous one-to-one compari-

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 3

son between the CPU and GPU implementations for scien-
tific applications — these one-to-one comparisons are the
main contribution of our work.

2 CPU and GPU Pipelines

We define the CPU computational pipeline for solving advection-
reaction-diffusion problems to be comprised of five distinct
components:arrays, computational boundaries, scattering
of data to processors,computational kernels, andmemory.
Each of these components can be mapped one-for-one into
the GPU graphics pipeline astextures, geometry, rasteriza-
tion, fragment programs, and theframebuffer— these com-
ponents form the basic building blocks for GP-GPU compu-
tations. Details on the complete OpenGL graphics pipeline
can be found in [31], and further details on GP-GPU basics
can be found in [19] and [22].

In the following sections we describe how to implement
a simple CPU program on the GPU, where data defined in a
simple array (e.g. a texture) with a computational boundary
(e.g. the geometry) is scattered to the processors (e.g. raster-
ized) and operated on using a computational kernel (e.g. a
fragment program), with the results stored in memory (e.g.
the framebuffer). The pipeline is illustrated in Figure (2). In-
cluded in Figure (2) is a branch showing where the fragment
program is loaded into the pipeline. There are several other
minor parts of the graphics pipeline and fragment programs,
such the initialization process, that will not be discussed in
this paper, but are covered in detail in [10].

4 Allen R. Sanderson et al.

Geometry/

Computational Boundary

Rasterizer/Scatterer Fragment Processors/

Multiple CPUs

(in Parallel)

Framebuffer/Memory

P
3

P
2

P
4

P
1

Texture/Array

Monitor

GPU

Fragment Program/

Computational Kernel

CG Compiler

Fig. 2 Layout of the CPU computational pipeline in terms of the GPU graphics pipeline, where data defined in a simple array (e.g. atexture)
over a computational boundary (e.g. the geometry) is scattered to the processors (e.g. rasterized) and operated on using a computational kernel
(e.g. a fragment program), with the results stored in memory(e.g. the framebuffer). This example shows how a 4 pipe GPU can be used to invert
the color of a texture.

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 5

2.1 Arrays and Textures

Texturesare the main memory data structures for GP-GPU
applications, which store the values that would otherwise
populate arrays in a CPU implementation. Although tradi-
tional graphics applications use textures to store 2D images,
these data structures can be generalized as a one, two, or
three dimensional array of data. Each element in the array
is known as atexel (texture element), and each texel can
store up to four values (representing the four color elements
used when storing an image — red, green, blue, and alpha,
also known as RGBA). Each of these values can be stored
as a single byte, or up to a 32-bit floating point value. When
accessing texels,texture coordinatesare used in a similiar
fashion as array indices in a CPU implementation. Textures
coordinates, however, are floating point numbers that have
been (typically) normalized from zero to one. As will be
discussed, the normalization of the texture coordinates plays
an important roll in the implementation the boundary condi-
tions.

For our GP-GPU implementation we choose to use four
element (RGBA), 2D floating point textures throughout for
reading and writing data, and also for representing the finite
difference discretization of the domain.

2.2 Computational Boundary and Geometry

Textures cannot be used alone and must be associated with
somegeometry, just as a painter needs a frame (geometry)
on which they can stretch their canvas (texture) for painting.
As such, a quadrilateral is analogous to the boundary of the
discrete computational domain of a CPU application. Geom-
etry is generated through the specification ofverticesthat
define a polygonal object. A mapping that associates parts
of the texture with regions of the geometry is then imple-
mented by associating texture coordinates with each vertex.
For example, when using all of a 2D texture for computa-
tion, the texture can be applied to a quadrilateral of the same
size, matching each corner texture coordinate with a vertex
of the quadrilateral. Furthermore, a normalized mapping be-
tween the quadrilateral and the texture would be from zero
to one, as shown in Figure (3).

This one-to-one mapping is not always used, as it is of-
ten desirable to break the computational domain into a series
of sub-domains. This approach is useful for applying Neu-
mann boundary conditions when performing relaxation. For
example, if the computation was to occur on the lower right
quadrant of a texture, the quadrilateral would be one quarter
the size with the normalized texture coordinates extending
from one half to one, as shown in Figure (4).

Worth noting in a discussion of the geometry is the use
the GPU’s vertex processors, which transform the geometry
before associating a texture with it. Although the vertex pro-
cessors work in parallel, and may in some cases increase the
efficiency of a GP-GPU implementation, we have not found
their usage to be particularly helpful in our work, and as such
only mention them in passing.

N

N

(0, N)

(0, 0) (N, 0)

(N, N)

[0, 0] [1, 0]

[0, 1]
[1, 1]

Fig. 3 Example of mapping a texture onto geometry with the same
size so that computations occur over the entire texture. Thegeometry
vertices (0,0), (N,0), (N,N), and (0,N) are mapped to the normalized
texture coordinates [0,0], [1,0], [1,1], and [0,1] respectively.

N

N

(0, N/2)

(0, 0) (N/2, 0)

(N/2, N/2)

[0.5, 0] [1, 0]

[1, 0.5][0.5, 0.5]

Fig. 4 Example of mapping a texture onto geometry that is one quarter
the size so that computations occur only over the lower rightquad-
rant of the texture. The geometry vertices (0,0), (N/2,0), (N/2,N/2),
and (0,N/2) are mapped to the normalized texture coordinates [0.5,0],
[1,0], [1,0.5], and [0.5,0.5] respectively.

2.3 Scattering and Rasterization

Once the four texture coordinates and geometry have been
specified they are nextrasterizedby the GPU. Rasterization
interpolates the values across the geometry, producing a set
of fragments, For example, each fragment is assigned their
own set of texture corrdinates based on the texture coordi-
nates initally specified at the four corners. Each fragment
represents a singlepixel(picture element) and includes prop-
erties of the geometry such as the 3D position and texture
coordinates as above but also the color. The fragments are
then scattered to the GPU processors similarly to how data
might be scattered to multiple CPUs.

6 Allen R. Sanderson et al.

2.4 Computational Kernels and Fragment Programs

Fragment programsare the algorithmic steps that are per-
formed in parallel on each fragment in a single instruction
multiple data (SIMD) fashion, equivalent to the computa-
tional kernels within the inner loops of a CPU program.
However, fragment programs have some limitations not in-
herent to a CPU application. For example, global scope does
not exist, thus all data necessary for the computation must
be passed to the fragment program in much the same man-
ner one would pass-by-value data to a third party library.
Also, fragments have an implicit destination associated with
them that cannot be modified. That is, a fragment with ar-
ray indices(i, j) will be written to location(i, j). This may
appear to be a computational limitation, but in practice we
have found it is rarely necessary to use different indices for
the source and destination.

For our work we utilize NVIDIA’s high level shading
language Cg (C for graphics) [10]. NVIDIA provides APIs
for loading the Cg fragment programs from the main pro-
gram, as well as a compiler for creating the graphics hard-
ware assembly language. Using a high level language such
as Cg greatly aids in the development of GP-GPU applica-
tions as the programming model is very similar to the well
known C paradigm. An example fragment program, imple-
mented in Cg, can be found in the Appendix.

2.5 Memory and Framebuffer

The output destination of a fragment program is theframe-
buffer. The data stored in the framebuffer can either be dis-
played on a monitor, or it can be accessed as a texture that
has beenattachedto a data structure called aframebuffer ob-
ject — this texture can then be used as the input texture to
another fragment program. Unlike CPU memory, however,
framebuffer objects do not supportin-placewriting of data
(e.g. the source is also the destination). Further, the GPU
will not write the results until all fragments have been pro-
cessed. The implications of this for iterative processes such
as explicit solvers and relaxation are discussed later in the
paper.

2.6 Global Scope and Reduction

Due to the absence of global scope on the GPU, it is not
possible to directly find, for example, the minimum or max-
imum value of the data stored in a texture — a process that
is easily implemented within the computational kernel of a
CPU program. This process of reducing the data into a single
value, known asreduction, can be synthesized on the GPU
through a series of steps that gradually contracts the data into
a single value. The GPU reduction operation is akin to the
restriction operation used in a multigrid implementation.

To obtain different reduction operations — averaging,
summation, greatest, least, equal, or Boolean — different fil-
ters are specified. On the GPU, these filters are implemented

as short fragment programs and used when performing an
asymmetrical map between the geometry and a texture. For
instance, if the geometry is half the size of the texture and a
2×2 weighted linear average filter is specified in the frag-
ment program, then the output written to the framebuffer
will be one quarter the original size (Figure (5)). By repeat-
edly halving the geometry over multiple passes, the output
will eventually be reduced to a single value that represents
the filtered value of all the data stored in the original texture.
While this description assumes that the domain is square and
an integer power of two, this need not be the case. The re-
duction technique can be used on arbitrarily sized domains
with appropriately sized filters.

N

N

(0, N/2)

(0, 0)

(N/2, 0)

(N/2, N/2)

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 5 Example of mapping a NxN texture onto smaller geometry, re-
ducing the texture into a result that is half the texture’s size. The geom-
etry vertices (0,0), (N/2,0), (N/2,N/2), and (0,N/2) are mapped to the
normalized texture coordinates [0,0], [1,0], [1,1], and [0,1] respec-
tively.

Boolean operations can also be performed using the GPU’s
built-in hardware occlusion query. We have chosen to rely
on reduction operations instead of this more sophisticated
method for performing Boolean operations for two reasons.
First, using the occlusion query requires a deeper under-
standing of the graphics pipeline, including the use of the
depth buffer. And second, the occlusion query is single pur-
pose, only doing Boolean operations where as more general
reduction operations such and summation and Boolean are
needed.

3 GPUs for Solving PDEs

In the previous section we describe the basic CPU com-
putational pipeline and how it maps to the GPU graphics
pipeline. We now discuss our application of the GP-GPU
components to solving PDEs used for advection-reaction-
diffusion problems.

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 7

3.1 Problem Background

Advection-reaction-diffusion problems are first-order in time
and second-order in space PDEs, representative of many parabolic
(diffusion dominant) and hyperbolic (advection dominant)
systems. We have chosen to implement on the GPU second-
order finite differences in space and two commonly employed
time discretization schemes: forward-Euler and a semi-implicit
Crank-Nicholson. The reason for choosing these solvers is
two-fold. First, these discretization methodologies provide
adequate results for our advection-reaction-diffusion prob-
lems. And second, the properties of each of these solvers are
well known. This latter reason allows for a rigorous com-
parison of the solvers’ implementations on the CPU and the
GPU, a task that may be unwieldy with more complicated
solvers.

3.1.1 Advection-Reaction-Diffusion Basics

Arguably the most popular reaction-diffusion model is the
one developed by Turing in 1952 [27]. This model describes
the chemical process between two morphogens within a se-
ries of cells. Due to instabilities in the system, the mor-
phogens both react and diffuse, changing their concentration
within each cell.

Turing described the reaction-diffusion of a two mor-
phogen model as a set of nonlinear PDEs:

∂u
∂ t

= F(u,v)+du∇2u (1)

∂v
∂ t

= G(u,v)+dv∇2v. (2)

These equations are solved on a two-dimensional domain
Ω with appropriate initial and boundary conditions, where
u(x,y, t) : Ω × [0,∞) → R andv(x,y, t) : Ω × [0,∞) → R are
the morphogen concentrations;F andG are the (non-linear)
reaction functions controlling the production rate ofu andv;
anddu anddv are the positive diffusion rates.

For the particular chemical problem of interest to Turing
[27], F andG are defined as:

F(u,v) = s(uv−u−α) (3)

G(u,v) = s(β −uv) (4)

whereα and β are the decay and growth rate ofu and v
respectively, ands is the reaction rate. For our applications,
we allow the decay and growth rates, as well as the reaction
rate, to vary across the domain.

Expanding upon our previous work [23], we consider
advection-reaction-diffusion systems of the form:

∂u
∂ t

+(a ·∇)u = F(u,v)+(∇ ·σu∇)u (5)

∂v
∂ t

+(a ·∇)v = G(u,v)+(∇ ·σv∇)v (6)

wherea : Ω × [0,∞) → R denotes a (possibly) spatially and
temporally varying advection velocity, whileσu andσv de-
note symmetric positive definite, spatially inhomogeneous,
anisotropic, diffusivity tensors foru andv respectively. Both
u and v are clamped to be positive values because of the
physical impossibility for the concentration of either mor-
phogen to be negative. For more details on the stability, equi-
librium conditions, and other affects related to the particular
reaction chosen, see [9].

3.1.2 PDE Solvers

In what is to follow, we will define everything in terms of the
morphogenu with the tacit assumption thatv will be handled
similarly. For the purposes of our discussion, let us assume
that our two-dimensional domain of interest,Ω , consists of
a square with periodic boundary conditions. In this domain,
a finite difference grid point,xi j , lies a distance∆x from
neighboring grid points. For many reaction-diffusion mod-
els∆x is a dimensionless unit spacing. Let us discretize our
morphogens as follows:un

i j = u(xi j , tn) wheretn+1 = tn +∆ t
denotes discretization in time andn = 0, · · · ,M with M be-
ing the total number of time steps, and(i, j) = 0, · · · ,(N−1)
with N equal to the width of the (square) domain. For no-
tational simplicity, let us define ¯un to be anN2 × 1 vec-
tor containing the values of the morphogens over the grid
at time steptn where the entries of the vector are given by
ūn

i+ jN = un
i j .

Let A(ū) and D(ū) denote discretized finite difference
operators which, when acting upon ¯u, returns a second-order
centered approximation of the advection operator and the
diffusion operator respectively. For simple uniform isotropic
diffusion, the diffusion operator is

∇2(u)i, j = (u)i−1, j +(u)i+1, j

+(u)i, j−1 +(u)i, j+1−4(u)i, j (7)

while the advection operator is

∇(u)i, j =

(

(u)i+1, j − (u)i−1, j
(u)i, j+1− (u)i, j−1

)

. (8)

For complete details on diffusion operators using inhomoge-
neous anisotropic diffusion, see [24].

The (explicit) forward-Euler finite difference system gen-
erated by discretizing Equations (5) and (6) is defined as:

ūn+1− ūn

∆ t
+A(ūn) = F(ūn, v̄n)+D(ūn) (9)

v̄n+1− v̄n

∆ t
+A(v̄n) = G(ūn, v̄n)+D(v̄n) (10)

8 Allen R. Sanderson et al.

where the reaction terms are assumed to be explicit evalua-
tions of the morphogens at the grid points. This scheme is
first-order in time.

Equations of this form can be manipulated so that the
unknowns at the next time step, namely ¯un+1 andv̄n+1, can
be deduced explicitly from known information at time step
tn — no system inversion is required. The major advantage
of computational systems of this form is the ease of imple-
mentation, while their major drawback is that the time step
used in the computation is not only dictated by accuracy, but
also stability. Depending on the diffusivity of the system,
the stability constraint due to the diffusion number may be
far more stringent than the accuracy constraint (and is more
constraining still than the CFL condition for the advection
and reaction terms) [14].

One possible way to alleviate the diffusion number con-
straint is to use a semi-implicit scheme [15], in which the ad-
vection and reaction terms are handled explicitly and the dif-
fusion terms are handled implicitly. Such an approach yields
the following system of equations to solve:

ūn+1− ūn

∆ t
+A(ūn) = F(ūn, v̄n)+(1−θ)D(ūn)

+θD(ūn+1) (11)

v̄n+1− v̄n

∆ t
+A(v̄n) = G(ūn, v̄n)+(1−θ)D(v̄n)

+θD(v̄n+1). (12)

where 0≤ θ ≤ 1. Given the linearity of the discretized dif-
fusion operator, we can thus re-write the system to be solved
as:

(I−θ∆ t D)ūn+1 = ūn +∆ t(−A(ūn)+F(ūn, v̄n)

+(1−θ)Dūn) (13)

(I−θ∆ t D)v̄n+1 = v̄n +∆ t(−A(v̄n)+G(ūn, v̄n)

+(1−θ)Dv̄n). (14)

whereI denotes theN2 ×N2 identity operator andD de-
notes theN2×N2 linear finite difference diffusion operator.
With the choice ofθ = 0, we regain the explicit forward-
Euler scheme. Forθ > 0 we obtain a semi-implicit scheme.
Two commonly used values ofθ are θ = 1 (correspond-
ing to first-order backward-Euler for viscous terms) andθ =
0.5 (corresponding to second-order Crank-Nicholson for the
viscous terms) [15].

The semi-implicit scheme withθ ≥ 0.5 eliminates the
stability constraint due to the diffusion terms at the trade-
off of requiring inversion of the linear operator(I−θ∆ t D).
The GP-GPU is amenable to several types of iterative so-
lution techniques for matrix inversion, such as general re-
laxation techniques (e.g. Jacobi) and hierarchical techniques
(e.g. multigrid).

3.2 GPU Implementation

Given the previous background we now discuss the specific
GP-GPU implementation for solving the PDEs that couple
the advection-reaction-diffusion equations.

3.2.1 Common Components

For the explicit and semi-implicit solvers there are three com-
mon components. The first is the use of four element (RGBA)
floating point textures that hold the constants associated with
advection, reaction, and diffusion for each cell, and are used
as input data to the fragment programs. These textures are
similar to the arrays one would use in a CPU implementation
in that they are used to pass static data to the computational
kernel. These textures are referred to as ancillary textures
(Tancil).

The second component common to both solvers is the
need in the diffusion computation to access not only the cur-
rent data value, but also the neighboring data values. Addi-
tionally, for inhomogeneous anisotropic diffusion it is nec-
essary to also access the neighboring diffusivity terms.

In a CPU implementation, determining the offset posi-
tions of the neighbors at each data value can be explicitly
calculated, or preferably, retrieved from a precomputed lookup
table. This latter approach can be taken with a GPU by us-
ing another texture as the lookup table. This texture, how-
ever, then must be stored within the limited GPU memory.
Computing neighbor offsets could also be done using the
GPU’s vertex processors, albeit at the cost of increased pro-
gramming complexity. An alternative approach that we have
taken is to explicitly pass the neighbor offsets into the frag-
ment program as multiple texture coordinates. To pass these
coordinates, multiple texture coordinates are specified at each
vertex of the geometry, with the rasterizer interpolating these
coordinates for each fragment passed into the fragment pro-
gram. Ideally, the coordinates of all eight surrounding neigh-
bors would be passed, however most GPUs allow at most
four sets of texture coordinates to be specified per vertex. To
bypass this hardware limitation we use three texture coordi-
nates for specifying the neighbor positions — the lower left
neighbor, central coordinate, and the upper right neighbor.
These three coordinates can be combined to fully specify all
eight neighbors by accessing each component of the texture
coordinates individually within a fragment program.

The third common component to both solvers is the im-
plementation of boundary conditions, such as periodic or
first order Neumann (zero flux). For a CPU implementation
it would be necessary to adjust the boundary neighbor coor-
dinates in the lookup table, or to have conditional branches
for the calculations along the boundary. In a GPU implemen-
tation, these alterations are avoided by defining a texture to
be repeatedor clamped. The repeat definition requires that
a modulo operation be performed on the texture coordinates
before accessing a texel. Likewise, the clamped definition
requires that a floor or ceil operation be performed if the
texture coordinates are outside the bounds. Thus, adjusting

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 9

the texture definition to be repeated or clamped, periodic
or Neumann boundary conditions respectively can be pre-
formed automatically by the GPU.

For a semi-implicit implementation utilizing Neumann
boundary conditions, however, it is well understood that ex-
tra relaxation sweeps are required near the boundaries to ob-
tain ideal asymptotic convergence rates [8]. As such, our
semi-implicit implementation uses five different computa-
tional domains; one for the interior and four for the bound-
aries, as shown is Figure (6). The thickness of the Neumann
boundaries are dependent on the size of the grid. For the ex-
amples in this paper, the thickness islog2(N), whereN is
the grid edge length. Overlap of the boundaries at the cor-
ners adds only a negligible cost to the overall computation
while aiding in the convergence of the solution.

log
2
(N)

N-2log
2
(N)

N

Fig. 6 Geometry domain using five quadrilaterals to obtain Neumann
boundary conditions.

Solving within a fragment program the PDEs that govern
the advection-reaction-diffusion equations for both the ex-
plicit and semi-implicit form is very similar to a CPU-based
approach with two exceptions — the use of vector arithmetic
and swizzling [18] in Cg fragment programs. Vector arith-
metic allows for element-wise arithmetic operations to be
performed, while swizzling allows the element ordering to
be changed during vector operations.

Because the textures and framebuffer are four element
(RGBA) texels and pixels respectively, arithmetic operations
in the fragment program may be done on a vector basis,
greatly simplifying and speeding up the advection and dif-
fusion calculations. Although vectoring is of little use in the
reaction calculation where individual components of the tex-
ture are used, the swizzle operation can be used to optimize
the performance of other operations.

3.2.2 Explicit Solver

Explicitly solving the advection-reaction-diffusion PDEs (Equa-
tions (9) and (10)) is straight forward, and requires only one
fragment program per iteration. Moreover, because updat-
ing the values ofu andv are independent computations, they
may be computed efficiently using the GPU vector arith-
metic operations.

The basic loop is as follows: store the required constants
(advection, reaction, and diffusion rates) as ancillary texture
values (Tancil); store the initial morphogen values in an input
texture (Tping) that is attached to the framebuffer; use the
fragment program to vector calculate (including clamping
to positive values) the advection-reaction-diffusion for both
morphogens; store the results in an output texture (Tpong)
that is also attached to the framebuffer. The output texture
is then used as the input texture for the next iteration. The
process is repeated for a set number of iterations or until the
user determines a stable solution has been reached. A flow
diagram of the complete process is shown in Figure (7), and
example code can be found in the Appendix.

There is one aspect of the loop that must be expanded
upon — the use of the input and output textures used to hold
the current and next time step morphogen values (Tping and
Tpong). In a CPU implementation, the new morphogen val-
ues would be written over the old values once the calcula-
tions have been completed, i.e.in-placewriting. Previously
discussed under the definition of Framebuffer Objects, how-
ever, an input texture can not also be the output texture. As
such, two textures must be used and alternated as the in-
put and the output. This technique is commonly called ping-
ponging, and as long as an even number of iterations are
performed, the use of these two texture can be hidden from
the CPU.

There is no communication between the GPU and the
CPU other than to load the initial values and to obtain the fi-
nal results because the complete advection-reaction-diffusion
calculation, including clamping the morphogen values to be
positive, can be done in a single fragment program. This lack
of interaction greatly speeds up the computations by limit-
ing the communication between the GPU and CPU, which
is often a bottleneck due to the limited amount of bandwidth
available.

3.2.3 Semi-Implicit Solver

Solving the advection-reaction-diffusion PDEs with an implicit-
solver can be, depending on one’s point of view, more inter-
esting, or, more difficult. The GPU is amenable to several
types of iterative solution techniques, such as relaxation and
hierarchical techniques, all of which require multiple frag-
ment programs. For our implementation we have chosen to
use relaxation in combination with aL2

norm residual test [6].
As explained in detail below we also utilize aL∞

norm test to
limit the number of relaxation steps. Each of these tests re-
quire a fragment program for the computation, as well as
one for a reduction operation, to obtain the result. All to-

10 Allen R. Sanderson et al.

T
ping

T
pong

T
ping

or

T
pong

If T
ping

 then T
pong

if T
pong

 then T
ping

Texture in Framebuffer

Initial Morphogen

Values u and v

Initially T
ping

Fig. 7 Flow diagram showing the basic steps taken using an explicit
solver on the GPU. The process flow is represented with black arrows
while the inputs are shown in gray.

tal, five steps are necessary using three fragment programs
and two reduction operations per iteration. The three frag-
ment programs are described in the following sections, with
a succeeding section that summarizes the semi-implicit com-
putation loop.

Right Hand Side

The first fragment program vector calculates the right-hand-
side of Equations (13) and (14), storing the results in a tex-
ture (TRHS) attached to the framebuffer.

Relaxation

The second fragment program performs the relaxation to ob-
tain a solution at the next time step. When performing relax-
ation, a Gauss-Seidel updating scheme is usually preferred
as it will typically converge twice as fast as Jacobi schemes
[14]. For a Gauss-Seidel scheme to be implemented effi-
ciently in parallel, it is necessary to have a shared memory
architecture. The GPU design, however, does not allow ac-
cess to the next values until all fragments have been operated

on. This limitation can partially be over come by using a red-
black updating scheme, but requires conditional branches in
the fragment program to process the red, then black, passes.
This situation is further complicated on the GPU because it
is not possible to writein-place, requiring a ping-pong tech-
nique to be integrated. These cumbersome restrictions do not
apply to the parallel Jacobi scheme, where intermediate val-
ues are not required and an even number of relaxation steps
can keep the texture ping-ponging hidden. Thus, the experi-
ments presented in this paper use a Jacobi updating strategy.

Although a preset number of relaxation steps can be per-
formed, it may be stopped early if the high frequency values
are damped quickly and do not change significanly with sub-
sequent relaxation. This is based on anL∞

norm. When testing
for this on a CPU, a global variable would be set if one or
more of the values have changed significantly after a relax-
ation step. The setting of a global variable is not possible
with GPUs, requiring the test to be performed through a re-
duction operation.

To perform the test, anL∞
norm is calculated at each texel

using the current and previous value, and the difference is
then tested against a preset value to see if the value has
changed significantly. This is done as a boolean operation in
the fragment relaxation program and stored as one of each
texel’s four elements. Once a relaxation step is completed,
the boolean results are sent to a reduction operation that uses
a summation filter to obtain a count of the values that have
changed significantly — if the count is non zero the relax-
ation step is repeated.

The overhead of performing the test after each relaxation
step, though, out weighs the benefits of stopping the relax-
ation early. As such, we have empirically determined that
performing the test after every fourth to sixth relaxation step
provides a reasonable balance in performance. By not test-
ing after each iteration we are relying upon the behavior of
iterative relaxation schemes to quickly remove the high fre-
quency error while taking many iterations to remove the low
frequency error.

It should be noted that if theL∞
norm passes the residual

test is still required insure that a satisfactory solution has
been found.

Residuals and Clamping

The third fragment program calculates the residuals that are
used to insure that the relaxation solution, which is an ap-
proximation, is satisfactory. This test is a two step operation.
For the first step, the square of the residual of Equations (13)
and (14) is calculated and stored as one of each texel’s four
elements in a separate texture (Tresid). For the second step,
the sum of squares of the difference is calculated using the
reduction operation.

While the residual values are being calculated, the mor-
phogen values are also clamped to positive values and stored
as two of each texel’s four elements in the residual texture
(Tresid). If the residual test is passed, thesepre-calculated
clamped values can be used in the next iteration. Otherwise,

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 11

the unclamped values can be further relaxed and re-tested.
Though this pre-calulation of the clamped values results in
only a slight overall increase in efficiency (< 1%), it demon-
strates the flexibility of using the GPU for general process-
ing.

The entire process is repeated for a set number of itera-
tions or until the user determines a stable solution has been
reached.

Complete Loop

With this general description, the semi-implicit loop is as
follows: store the required constants (advection, reaction,
and diffusion rates) as ancillary texture values (Tancil); store
the initial morphogen values in an input texture (Tping) that
is attached to the framebuffer; vector calculate the RHS for
u and v, storing the results in a texture (TRHS) attached to
the framebuffer object. Next, load the current morphogen
(Tping), RHS (TRHS) and the required constants (Tancil) tex-
tures; use the relaxation fragment program to vector calcu-
late the next value ofu andv and theL∞

norm for each; store
the results in an output texture (Tpong) that is also attached to
the framebuffer. Check theL∞

norm after every sixth iteration
using the reduction operation. After the relaxation is com-
plete, calculate the residuals and clamped values storing the
results in a texture (Tresid) attached to the framebuffer object.
Sum the residuals using a reduction operation. If the resid-
ual is too large the relaxation process is repeated until the
residual is small enough or is no longer decreasing. If the
residual test passes, use the clamped values and repeat the
entire process for the next iteration. A flow diagram of the
complete process is shown in Figure (8).

There is one aspect of the process that deserves special
attention. In order take advantage of the arithmetic vector
processing on a GPU, our implementation requires that both
u and v be operated on in a lock step manner. That is, if
one requires further relaxation or has large residuals it is the
same as if both failed. As a result, both morphogens will be
processed with the same number of relaxation steps, which
in some cases will result in an over relaxation. It is possi-
ble, however, to operate on each separately through the use
of conditional branches, but the cost of doing so in fragment
programs out weighs the cost of the over relaxation compu-
tations. Conversely, a staggered approach which would be
done on a CPU can be used. In this case,u andv are stored
and operated on separately — in our experience this results
in a 25% to 33% increase in computational time without any
quantitative difference in the solution. As such, the results
presented in this paper utilize the more efficient lock step
approach for computingu andv.

The above point highlights that when mapping algorithms
onto the GPU, implementing the CPU version exactly may
not always be the most algorithmically efficient scheme. And
for some algorithms, such as a Gauss-Seidel updating scheme,
the inefficiencies may preclude its use on the GPU. These
examples illustrate how the GPU architecture can often dic-
tate the implementation.

4 Results and Discussion

We have used Turing’s reaction-diffusion model, which in its
simplest form produces a spot or stripe pattern as shown in
Figures (9), to verify and validate our implementations. The
system has been implemented on both the CPU and GPU
as explicit and semi-implicit (Crank-Nicholson) Euler solu-
tions with periodic boundary conditions on an Intel Xeon P4
running at 3.4Ghz with 2Gb of RAM and 2Gb swap, and a
NVIDIA GeForce 6800 Ultra graphics card with 256Mb of
memory using version 1.0-8178 of the NVIDIA Linux dis-
play driver.

For both integration schemes we discretize the grid using
a dimensionless unit spacing, which is the norm for reaction-
diffusion models. In addition, the largest time step possi-
ble with respect to stability limitations was used for each
scheme. The diffusion stability bounds the explicit scheme,
whereas the reaction stability bounds the semi-implicit scheme.

To facilitate a fair comparison, both the CPU and GPU
implementations have the exact same capability. Because the
GPU is able to use at most 32-bit floating point precision the
CPU version was also limited to machine single precision.
We further note that memory organization can effect per-
formance. As such, contiguous memory allocation, which is
required for the textures, was used for CPU memory layout.

In order to compare the results it is necessary to ensure
that the solutions obtained are the same in all cases, or at
least reach a preset stopping criteria typically based upon
a difference measure. Quantitatively comparing the solution
results, however, is not possible for reaction-diffusion mod-
els because the equilibrium reached is dynamic; meaning
that although a stable pattern forms, the system continues
to change. This problem is further compounded by the dif-
ferences in the implementation of the floating point standard
between the CPU and GPU, which creates slightly different
solutions. Thus, we use a criteria based strictly on the num-
ber of iterations, such that each solution has the same over-
all integration time whether the technique used was explicit
or implicit, or performed on a CPU or GPU — see Table
1 for the integration times. In Figure (10) we show a com-
parison of the results for the four solution techniques that
have each reached a dynamic equilibrium; each of the so-
lutions are equivalent in the Lyapunov-sense. Furthermore,
under very close examination is it difficult to visually dis-
cern the differences between the CPU and GPU solutions.
We thus conclude that each of the solvers have reached an
approximately equal solution.

Although the implementations and the compilers are op-
timized, the times we report are not the absolute best pos-
sible. This is because the framework was developed as an
application to explore various advection-reaction-diffusion
models rather than to specifically compute one model. We
believe, however, that even if the computations were stream-
lined further, the relative speedups would not change signif-
icantly. As such, the results give a good indication of the
power of using the GPU for general processing on a practi-
cal level.

12 Allen R. Sanderson et al.

Table (1) shows the relative compute times for both the
CPU and GPU implementations using a 512x512 grid. For
all cases the total integration time is the same — 25000 sec-
onds — with an explicit time step of 0.5 seconds for 50000
iterations, and an implicit time step of 12.5 seconds for 2000
iterations. The 0.5 seconds and 12.5 seconds represent the
largest possible time steps for maintaining stability require-
ments. In the case of the explicit solution, the time step is
bound by the diffusion, whereas with the semi-implicit solu-
tion, the time step was bound by the reaction.

As one would expect, the GPU implementations are faster
than the CPU implementations, ranging from approximately
5.0 to 11.7 times faster for semi-implicit and explicit solu-
tions respectively. This is most evident when comparing the
explicit implementations where, unlike the semi-implicit im-
plementations, a single fragment program is used, resulting
in less overhead and a greater overall speed up.

When comparing the CPU and GPU explicit and semi-
implicit implementations, a greater speed up is realized on
the CPU than the GPU, 3.3 versus 1.4 respectively. This dif-
ference is attributed to the overhead of using multiple frag-
ment programs and a specialized reduction operation on the
GPU. On the CPU there is no need for an explicit reduc-
tion operation because there is global scope and such cal-
culations can be done as part of the relaxation and residual
operations.

Finally, the speed of the GPU implementations makes it
practical to visually study the affects of advection because
of the near real time images obtained during the simulation.
When visually studying the advection, it is preferable to use
the explicit solution because more intermediate views are
available for visualization, resulting in smoother motion. For
example, when displaying the results after every 50th itera-
tion for a 256x256 grid using an explicit GPU implementa-
tion, 6.8 frames per second can be obtained. It is possible
to get real time frame rates by displaying the results after
every 10th iteration, which provides 22 frames per second.
The overhead of this smoother visualization process, how-
ever, slows down the system by approximately 1/3 when
compared to displaying the results after every 50th iteration.

Table 1 Time, in seconds, for the four different PDE solutions of Tur-
ing’s spot pattern, along with the relative speedup for a 512x 512 grid.
The solutions use a total integration step time of 25000 seconds, with
an explicit time step of 0.5 seconds for 50000 iterations, and an implicit
time step of 12.5 seconds for 2000 iterations.

CPU GPU

Forward Euler 6030 sec
11.7x
→ 516 sec

↓ 3.3x ↓ 1.4x

Crank-Nicholson 1807 sec
5.0x
→ 362 sec

Another important issue is scalability. GPUs, like other
processors, have a limited amount of memory that can be ac-
cessed before explicit memory management must be used.
Unlike CPUs where there is some flexibility on the amount

of memory available, GPUs have only a fixed amount of
memory. Thus, for optimal GPU performance it is necessary
to work within these strict memory bounds. In Figure (11)
we show the results of the computation time as a function of
grid width for both the forward Euler and Crank-Nicholson
implementations. The computation time is approximately quadratic
with grid width, and large (10242) grids are accommodated
without a loss in performance.

The next comparison is the ratio of the CPU and GPU
solution times as a function of the grid width using both ex-
plicit and semi-implicit implementations. Shown in Figure
(12), it is readily apparent that there is a consistently greater
speed up when using an explicit solution. Furthermore, the
speed up ratio of the explicit solution increases with the grid
width at a greater rate than the semi-implicit solution due to
the increase in the number of relaxations required to smooth
the fine detail in the semi-implicit solution over the larger
grids. We expect that the use of hierarchical solutions, such
as multi-grid, will cause the relative speed ups between the
explicit and implicit solutions to remain approximately con-
stant.

Finally, we compare the ratio of the explicit and semi-
implicit times as a function of grid width using GPU and
CPU implementations as shown in Figure (13). The rela-
tive speed ups are similar across the grid width, with the
CPU speed up being greater than the associated GPU speed
up. This is again attributed to the need for multiple frag-
ment programs and a separate reduction operation on the
GPU when using semi-implicit implementations. In fact, this
overhead is so great on the GPU for the semi-implicit solu-
tions that much of the computational benefits are lost. This
shows that not only must the problem spacefit on the GPU,
but the implementation must alsoalign with the GPU archi-
tecture to achieve significant increases in the computation
time.

In all of the experiments reported above we have ob-
served similar trends when using Neumann boundary condi-
tions. As such, we conclude that the type of boundary condi-
tion adds very little overhead to the overall implementation.

5 Conclusions

The use of GPUs for general purpose processing, though still
in its infancy, has proven useful for solving the PDEs asso-
ciated with advection-reaction-diffusion models. We show
that both explicit and semi-implicit solutions are possible,
and that good speed ups can be achieved, more so with ex-
plicit than semi-implicit solutions. Even with their associ-
ated programming overhead, GPU implementations have a
similar structure to CPU implementations. Though global
scope is not directly available with GPU-based implemen-
tations, it can be synthesized through other native GPU op-
erations that mimic CPU style restriction operations. Imple-
mentations of these types of operations, however, may not
be straight forward to researchers without graphics program-
ming knowledge.

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 13

Perhaps the most surprising finding is that due to the
overhead of multiple fragment programs, the speed-ups most
often associated with semi-implicit relaxation schemes are
lost when implemented on a GPU. Though faster than CPU
based semi-implicit implementations, they are not signifi-
cantly greater than GPU based explicit solution. As previ-
ously noted, this shows that not only must the problem space
fit on the GPU, but the implementation must also align with
the GPU architecture.

In the work presented here we use basic solvers with 2D
finite differences. Finite differences, with its implied neigh-
bor relationships, is straight forward to implement because
of the one-to-one mapping to a texture, while the neighbor
indexes can be readily pre-calculated. We take advantage of
the use of additional texture coordinates to perform this cal-
culation.

We are now left with the question: Is our implementation
and associated results indicative of other problems and other
solvers? To explore this question, we have begun to inves-
tigate a GPU volume solver with finite differences which,
when compared to a similar CPU implementation also us-
ing an explicit solver, provides a 22−27 times increase in
performance. This much larger increase in performance we
believe is due the unique memory paging system on the GPU
that is not native to, but could be implemented on, the CPU.

It would also be of interest to use a finite element ap-
proach that requires textures to store the neighbor indices.
If a curved domain was used, additional textures would be
needed to store the mapping for each element back to a unit
element. Using additional textures is limited only by the
number of textures that can be passed, and the available
memory on the GPU.

Perhaps not as clear are the results of applying GPU
techniques to other, more complicated solvers because of
the overhead of using multiple fragment programs and their
associated control structures. We envision that GPU imple-
mentations of techniques that require global results, such
as anL2

norm residual, will generate less speed up over tech-
niques that would require anL∞

norm (which may be able to use
the hardware occlusion queries in an asynchronous manner).

Of greater interest is applying this work to other science
and engineering problems that can fit within the memory and
precision limits of the GPU. While current GPU memory
and precision are limited, we expect the continuing evolu-
tion of GPU technology (including multiple GPUs per ma-
chine and an accumulator that would provide global mem-
ory scope as well as the full developement of environments
like NVIDIA’s CUDA) to allow for the application of the
techniques presented in this paper to larger computational
applications.

Finally we must stress that the technology is changing
rapidly. In the course of this research, the authors used three
different graphics cards, six versions of the NVIDIA display
drivers, three versions of the Cg compiler, and two differ-
ent off-screen rendering protocols (Pixelbuffers and Frame-
buffer Objects). The affect of each change typically increased
the speed of the GPU implementations, but not always. This

is because the four GPU components presented in the paper
are typically not updated in concert. As such, as one compo-
nent is updated it may take time for the other components to
also utilize the newer technology.

6 Acknowledgments

This work was supported, in part, by the DOE SciDAC Pro-
gram and from grants from NSF, NIH, and DOE. The au-
thors wish to thank Martin Berzins and Oren Livne for their
insightful discussions on PDEs, Lingfa Yang for his insights
on reaction-diffusion systems, and the anonymous reviewers
for their many useful suggestions.

References

1. Brook homepage. URL http://graphics.stanford.edu/projects/brookgpu
2. Microsoft high-level shading language. URL

http://msdn.microsoft.com/directx/
3. Nvidia cuda homepage. URL

http://developer.nvidia.com/object/cuda.html
4. Opengl shading language. URL

http://www.opengl.org/documentation/oglsl.html
5. Shallows homepage. URL http://shallows.sourceforge.net/
6. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra,

J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates
for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia, PA (1994)

7. Bolz, J., Farmer, I., Grinspun, E., Schroder, P.: Sparse matrix
solvers on the gpu: Conjugate gradients and multigrid. ACM
Transactions on Graphics22(3), 917–924 (2003)

8. Brandt, A.: Algebraic multigrid theory: The symmetric case.
Appl. Math. Comput.19(1-4), 23–56 (1986)

9. Epstein, I., Pojman, J.: An Introduction to Nonlinear Chemical
Dynamics. Oxford University Press, New York (1998)

10. Fernando, R., Kilgard, M.: Cg: The Cg Tutorial. Addison Wesley,
New York (2003)

11. Goodnight, N., Wollley, C., Lewin, G., Luebkw, D., Humphreys,
G.: A mutligrid solver for boundary value problems using pro-
gramable graphics hardware. In: Graphics Hardware 2003, pp.
1–11 (2003)

12. Gray, P., Scott, S.: Sustained oscillations and other exotic patterns
of behaviour in isothermal reactions. Journal of Physical Chem-
istry 89(1), 22–32 (1985)

13. Harris, M., Coombe, G., Scheuermann, T., Lastra, A.: Physically-
based visual simulation on graphics hardware. In: GraphicsHard-
ware 2002, pp. 1–10. ACM Press, New York, NY, USA (2002)

14. Karniadakis, G., Kirby, R.M.: Parallel Scientific Computing in
C++ and MPI. Cambridge University Press, New York (2003)

15. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for
CFD. Oxford University Press (1999)

16. Kruger, J., Westermann, R.: Linear algebra operatiors for gpu
implementation of numerical algrothms. ACM Transactions on
Graphics22(3), 908–916 (2003)

17. Lefohn, A., Kniss, J., Hansen, C., Whitaker, R.: Interactive de-
formation and visualization of level set surfaces using graphics
hardware. In: IEEE Visualization 2003, pp. 75–82 (2003)

18. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.:Cg: A
system for programming graphics hardware in a c-like language.
ACM Transactions on Graphics22(3), 896–907 (2003)

19. Mark Pharr, e.: GPU Gems 2C. Addison Wesley, New York, NY
(2005)

20. McCool, M., Toit, S.D.: Metaprogramming GPUs with Sh. A.K.
Peters, Natick, MA (2004)

14 Allen R. Sanderson et al.

21. McCormick, P.S., Inman, J., ahrems, J.P., Hansen, C., Roh, G.:
Scout: A hardware-accelerated system for aunatiatively driven
visulization and analysis. In: Visualization ’04: Proceedings
of the conference on Visualization ’04, pp. 1171–186. IEEE
Computer Society, Washington, DC, USA (2004). DOI
http://dx.doi.org/10.1109/VIS.2004.25

22. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krer, J.,
Lefohn, A.E., Purcell, T.J.: A survey of general-purpose compu-
tation on graphics hardware. In: Eurographics 2005, State of the
Art Reports, pp. 21–51 (2005)

23. Sanderson, A.R., Johnson, C.R., Kirby, R.M.: Display ofvector
fields using a reaction-diffusion model. In: Visualization’04: Pro-
ceedings of the conference on Visualization ’04, pp. 115–122.
IEEE Computer Society, Washington, DC, USA (2004). DOI
http://dx.doi.org/10.1109/VIS.2004.25

24. Sanderson, A.R., Johnson, C.R., Kirby, R.M., Yang, L.: Advanced
reaction-diffusion models for texture synthesis. Journalof Graph-
ics Tools11(3), 47–71 (2006)

25. Sandri, M.: Numerical calculation of lyapunov exponents. The
Mathematica Journal6, 78–84 (1996)

26. Strzodka, R., Rumpf, M.: Nonlinear diffusion in graphics hard-
ware. In: Proceedings of EG/IEEE TCVG Symposium on Visual-
ization, pp. 75–84 (2001)

27. Turing, A.: The chemical basis of morphogenesis. Phil. Trans.
Roy. Soc. Lond.B237, 37–72 (1952)

28. Verwer, J., Hundsdorfer, W., Blom, J.: Numerical time integration
for air pollutions. Surveys on Mathematics for INdustry10, 107–
174 (2002)

29. Wedge, N., Branicky, M., Cavusoglu, M.: Computationally effi-
cient cardiac bioelectricity models toward whole-heart simulation.
In: Proc. Intl. Conf. IEEE Engineering in Medicine and Biology
Society, pp. 3027–3030. IEEE Press, New York, NY, USA (2004)

30. Weiskopf, D., Erlebacher, G., Hopf, M., Ertl, T.: Hardware-
accelerated lagrangian-eulerian texture advection for 2dflow vi-
sualization. In: Proceedings of Workshop in Vision, Modeling,
and Visualization, pp. 77–84 (2002)

31. Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL Program-
ming Guide. Addison Wesley, New York (1999)

32. Yang, L., Dolnik, M., Zhabotinsky, A.M., Epstein, I.R.:Spa-
tial resonances and superposition patterns in a reaction-diffusion
model with interacting turing modes. Physical Review Letters
88(20), 208,303–1–4 (2002)

7 Appendix

T
ping

T
pong

T
ping

or

T
pong

If T
ping

 then T
pong

if T
pong

 then T
ping

Texture in Framebuffer

Initial Morphogen

Values u and v

Initially T
ping

Write to Texture (T
RHS

)

in Framebuffer

6th Iteration?

Write to Texture (T
resid

)

in Framebuffer

GPU - Fragment Program

Calculate Residuals and

Clamp to Positive Values

Use Clamped Values

in TextureT
resid

GPU - Fragment Program

Relaxation w/Jacobi & Compute Change

GPU - Fragment Program

Reduction Operation - Test for Change

Fig. 8 Flow diagram showing the basic steps taken using an implicit
solver on the GPU. The process flow is represented with black arrows
while the inputs are shown in gray.

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 15

Fig. 9 A spot and stripe pattern formed using a Turing reaction-
diffusion system.

Fig. 10 A comparison of the solution for Turing’s basic spot pattern
using (left to right, top to bottom): an explicit CPU technique; an ex-
plicit GPU techniques; a semi-implicit CPU technique; and asemi-
implicit GPU technique. Qualitatively all of the solutionsare approxi-
mately equal.

10
2

10
3

10
1

10
2

10
3

10
4

10
5

Grid Size

T
im

e
(s

ec
on

ds
)

Fig. 11 Average time in seconds for square grid widths of128, 256,
512, and1024for four different implementations: forward Euler CPU
(triangle); Crank-Nicholson CPU (asterisks); forward Euler GPU
(square); Crank-Nicholson GPU (circle).

10
2

10
3

0

2

4

6

8

10

12

14

Grid Size

R
at

io

Fig. 12 Speed up ratios between CPU and GPU solutions for square
grid widths of128, 256, 512, and1024using an explicit (square) and
an semi-implicit (circle) implementation.

16 Allen R. Sanderson et al.

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Grid Size

R
at

io

Fig. 13 Speed up ratios between explicit and semi-implicit implemen-
tations for square grid widths of 128, 256, 512, and 1024 using a GPU
(square) and a CPU (circle).

A Framework for Exploring Numerical Solutions of Advection-Reaction-Diffusion Equations Using a GPU-Based Approach 17

Pseudo code that demonstrates the C++ program that is used on theCPU for the explicit solver.

// Load the fragment program to be used on the GPU
cgGLBindProgram(_cg_Program);

// Enable the acillary texture
cgGLEnableTextureParameter(_cg_ConstsTex);

// Set the inputs to be the Ping Texture
cgGLSetTextureParameter(_cg_Inputs, _gl_PingTexID);

// Set the drawing (writing) to be the Pong Texture which is in FrambebufferObject 1
glDrawBuffer(GL_COLOR_ATTACHMENT1_EXT);

// Do the drawing which invokes the fragment program
glCallList(_gl_dlAll);

// Repeat the last three steps but this time the Pong Texture is the input and
// the Ping Texture is the output.

cgGLSetTextureParameter(_cg_Inputs, _gl_PongTexID);
glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
glCallList(_gl_dlAll);

A sample fragment program, implemented in Cg, that demonstrates the calculation of the reaction portion of the system on
the GPU.

void main(float2 texCoord0 : TEXCOORD0, // Upper left neighbor texture coordinate
float2 texCoord1 : TEXCOORD1, // Central neighbor texture coordinate
float2 texCoord2 : TEXCOORD2, // Lower right neighbor texture coordinate

uniform sampler2D inputs, // Input texture values
uniform sampler2D consts, // Constant texture values

out float4 oColor : COLOR) // Output value
{
// Get the current value from the input texture.

float4 c = f4tex2D(inputs, texCoord1);

// Set the output to the current value.
oColor = c;

// Get constant values for this cell.
float4 c_values = f4tex2D(consts, texCoord1);

// Calculate the "Reaction" portion using float4 vector operations
// along with swizzling (eg. c.rrbb * c.ggaa).

float4 nonlinear = c.rrbb * c.ggaa * float4(1.0, -1.0, 1.0, -1.0);
float4 linear = c * float4(-1.0, 0.0, -1.0, 0.0);
float4 konst = c_values.rgrg * float4(-1.0, 1.0, -1.0, 1.0);

// Add the reaction to the current value.
oColor += c_values.a * (nonlinear + linear + konst);

// Clamp the values to be positive.
if (oColor.r < 0.0f) oColor.r = 0.0f;
if (oColor.g < 0.0f) oColor.g = 0.0f;

}

