

SIGGRAPH2007

Robust On-line Computation of Reeb Graphs: Simplicity and Speed

SIGGRAPH2007

Valerio Pascucci Giorgio Scorzelli Peer-Timo Bremer Ajith Mascarenhas CASC - LLNL

The Reeb Graph Is the Topological Skeleton of a Geometric Model

• Given a mesh.

• Given a mesh and a function defined on it.

- Given a mesh and a function defined on it.
- Consider an isocontour.

- Given a mesh and a function defined on it.
- Consider an isocontour.

- Given a mesh and a function defined on it.
- Consider an isocontour and contract each component.

- Given a mesh and a function defined on it.
- Consider an isocontour and contract each component.
- Repeat for all contours while maintaining adjacency.

The Reeb Graph Is a Fundamental Descriptor of the Topology of Shapes

Shape matching [Hilaga et al. SIGGRAPH'01]

Mesh repair [Wood et al. ToG'04]

Mesh parameterization [Zhang et al.ToG'05]

Shape skeletons [Lazarus et al. SM'02]

Morphing [Lee et al. CA&VW '06]

Data analysis [Laney et al. Vis'06]

Previous Methods Trade Generality for Better Worst Case Complexity

Construction from slices
 [Shinagawa et al. CG&A'91]

Contour Trees [Carr et al. SODA '00]

Loops in Reeb graphs
 [Cole-McLaughlin SoCG'03]

We Propose an Approach Aiming at Generality and Practical Performance

- Input model can be non-manifold.
- Input model of any dimension.
- No need to reorder the input triangles.
- Run in out of core mode.
- Multi-resolution representation.

St.Mathew 372Mt, 486s, 8MB.

Update of the Reeb Graph After Insertion of Each New Element

 Consider a 2D model of known Reeb graph (initial condition = empty graph):

> Add new vertex.

> Add new edge.

> Add new triangle.

maximum
saddle
minimum

SIGGRAPH2007 -

SIGGRAPH2007 -

SIGGRAPH2007 =

On-line Construction of the Reeb Graph for a Triple Torus Model

The Approach is Based on a Few Simple Assumptions on the Input

Sequence of vertices, edges, and triangles.

 Indexed mesh: triangles/edges defined as references to vertices.

 Finalization: each vertex knows when it is referenced for the last time (if needed a pass can collect this information easily and fast).

In Out of Core Mode Unnecessary Elements Are Removed from Memory

- From input mesh:
 - Never store triangles.
 - Remove finalized vertices.
 - Remove edges with finalized vertices.
- From Reeb graph:
 - Retire arcs without edge reference.
 - Retire nodes without edge reference and adjacent arcs.

The Input Triangles Do Not Need to Be in Any Particular Order

Dancer model with 50K triangles.

 Sorted by Z coordinate: 0.11s, 1.8MB. Original mesh:
 0.2s, 1.8MB.

We Exploit the Locality of an Input Mesh in Cache Friendly Format

David model: 56Mt, 108s, 2.1MB

The Reeb Graph Can Be Simplified by Removing Branches and Loops

The Reeb Graph Can Be Simplified by Removing Branches and Loops

The User Can Choose the Level of Resolution for the Reeb Graph

The Simplification Can Be Used to Develop Shape Signatures

SIGGRAPH2007 =

SIGGRAPH2007 -

Practical Tests Confirm Robustness and Show Good Scalability

