Robust On-line Computation of Reeb Graphs:
Simplicity and Speed*

Valerio Pascucci Giorgio Scorzelli Peer-Timo Bremer Ajith Mascarenhas
CASC - LLNL/CS - UC DAVIS CASC - LLNL CASC - LLNL CASC - LLNL
pascucci@acm.org scrgiorgio@cogesic.it ptbremer@acm.org mascarenhasl1@IInl.gov

o
5]
g
ot

4=
)

O

Figure 1. (Top row) Simplified Reeb graphs of the Dancer, Malaysian Goddess, Happy Buddha; and David together with two close-ups
showing a tiny tunnel at the base of David’s leg. The pseudo-colored surfaces show the function used for computing the Reeb graph. The
transparent models show the structure of the Reeb graph and its embedding. (Bottom row) The Heptoroid model and two levels of resolution
for the Reeb graph of the Asian Dragon model.

Abstract For interactive multi-resolution navigation we also build a hierar-
Reeb graphs are a fundamental data structure for understanding anghical data structure which allows real-time extraction of approxi-
representing the topology of shapes. They are used in computermated Reeb graphs containing all topological features above a given
graphics, solid modeling, and visualization for applications ranging error threshold.

from the computation of similarities and finding defects in complex

models to the automatic selection of visualization parameters. Our extensive experiments show both high performance and prac-

tical linear scalability for meshes ranging from thousands to hun-
We introduce aron-line algorithm that reads a stream of elements dreds of millions of triangles. We apply our algorithm to the largest,
(vertices, triangles, tetrahedra, etc.) and continuously maintains themost general, triangulated surfaces available to us, including 3D,

Reeb graph of all elements already read. The algorithrobiast 4D and 5D simplicial meshes. To demonstrate one important appli-
in handling non-manifold meshes ageneralin its applicability to ~ cation we use Reeb graphs to find and highlight topological defects
input models of any dimension. in meshes, including some widely believed to be “clean.”

Optionally, we construct a skeleton-like embedding of the Reeb 1 Introduction

graph, and/or remove topological noise to reduce the output size.The Reeb graph [Reeb 1946] is a fundamental data structure that
encodes the topology of a shape. It is obtained by contracting
*For more information about the project see: to a point the connected components of the level-sets (also called
http://pascucci.org/research/topology/reeb-graph/ contours) of a function defined on a mesh. The Reeb graph has
been used extensively in a wide range of applications such as

shape matching [Hilaga et al. 2001] and encoding [Shinagawa et al.
1991; Lazarus and Verroust 1999; Takahashi et al. 1997], com-
pression [Biasotti et al. 2000], surface parameterization [Steiner
and Fischer 2002], and iso-surface remeshing [Wood et al. 2000]
and simplification [Wood et al. 2004]. Reeb graphs can determine

whether a surface has been reconstructed correctly, indicate prob-

lem areas, and can be used to encode and animate a model. Topo-

logical concepts such as the Reeb graph are especially useful in

processing massive models like those generated by high-resolution

laser range scans. However, we are aware of only two gener-

ically applicable algorithms [Shinagawa and Kunii 1991; Cole- thus is restricted to one of the three coordinate functions.
McLaughlin et al. 2003] to compute Reeb graphs neither of which . o o _
Contour trees are widely used in visualization and even a limited

is able to handle even moderately size surfaces. Both algorithms f related Kisb dth f thi Standard
require a global sorting step, expensive temporary data structures SUrvey of related work is beyond the scope of this paper. Standar

and most importantly demand the input to be a manifold surface. 2/90rithms to compute contour trees in any dimension can be found

None of these requirements can be fulfilled for models such as the " [CaT etal. 2003] and [Chiang et al. 2005] and an extension which
David shown in Figure 1(top-right). augments the tree with information about the genus of the level-sets

in [Pascucci and Cole-McLaughlin 2003]. Some of the more popu-
This paper presents a new algorithm to compute Reeb Graphs in anlar applications include the acceleration of level-set extraction [van
on-line fashion. The algorithm is fast, scales linearly in practice, Kreveld et al. 1997], simplification of level-sets [Carr et al. 2004],
and handles virtually any simplicial mesh without restrictions on and the automatic design of transfer functions [Weber et al. 2002].
dimension or complexity. When available, the algorithm takes ad- Contributions. One fundamental novelty of our algorithm is the
vantage of coherency in the input (even one not as perfect as the onebility to achieve practical efficiency while eliminating the need to
constructed in [Isenburg and Lindstrom 2005]), and computes Reebsort the mesh. In particular, this paper provides contributions in
graphs of massive models using a small memory footprint. Further- four areas. We:
more, our algorithm naturally handles non-manifold surfaces. As (i) Introduce a robust algorithm to compute Reeb graphs for simpli-
we prove in Section 3 this property is sufficient to compute Reeb cial meshes using a stream of local updates. The algorithm naturally
graphs for meshes of any dimension and we show three, four, andtakes advantage of coherency in the input and makes effective use
five-dimensional examples. of auxiliary information such as knowing that the input is a mani-
fold or explicit vertex finalization;
(i) Compute a simplification and a good embedding of the Reeb
graph with a small performance overhead of less than 5% of the
overall running time;
(i) Prove and demonstrate how the same algorithm can be used
to compute Reeb Graphs of tetrahedral and higher dimensional

During the on-line computation we can create an embedding of the
Reeb graph similar to the one described in [Lazarus and Verroust
1999] which provides a medial-axis-type skeleton representation of
the surface. The skeleton can be used to model or animate the sur
face as well as to display the Reeb graph itself. If necessary, we
also remove topological noise on-the-fly to avoid creating unneces- meshes: and

sarily Iarge graphs. Finally, We process the Reeb graph to create a(iv) Provide extensive empirical evidence showing high perfor-
progressive layout that prqwdes real-time access to the .graph N 4mance (processing 500K to 800K triangles per second) and prac-
coarse to fine manner. This allows the handling of massive graphsyjc| inear scalability up to the largest models available to us. In
on moderate hardware and makes them available for various appll-particular we compute the Reeb graph of the St. Matthew model,

cations such as topological simplification [Wood et al. 2004]. with 372M triangles, in 486 seconds using less than 20MB of main
Prior work. Reeb graphs, and especially their loop-free special- memory. '

ization called contour trees, are popular in computer graphics and
visualization. In [1991] Shinagawa et al. first introduced Reeb
graphs to the computer graphics community using them to constructz_ Ree_b Graphs) _ o)
surfaces. In a later related paper Takahashi et al. [Takahashi et alGiven a simplicial mestv with a piecewise linear (PL) function
1997] enhance the Reeb graph with certain flow curves on the sur-F sampled at its vertices, thevel-setat a valuesis defined as the
face to create a control net used to encode smooth surfaces. Biasottet of points inVl with function value equal ts. We analyze the
and others [Biasotti 2001; Attene et al. 2001; Biasotti et al. 2000] €evolution of the connected components of the level-sefsadlled
reconstruct, compress, and analyze surfaces based on related corfontours

cepts. Along a slightly different line, Hilaga et al. [2001] use Reeb
graphs of an approximated all-pairs-shortest-distance function on a
surface to find shapes in a data base. A more extensive collection
of similar ideas can be found in [Funkhouser and Kazhdan 2004].
Steiner and Fisher [2002; 2001] are interested in cutting an arbi-
trary surface into a disk and to this end store selected level-sets
along edges of the Reeb graph. A handle in the surface is openec
by cutting along the level-set stored in the loop of the Reeb graph
corresponding to the handle. Ni et al.[2004] solve the same prob-
lem by computing a “fair” Morse function on the surface and use
its Morse complex to define the cuts.

TheReeb graptRG of F is obtained by contracting the contours of
F to points. An example of this construction is shown in Figure 2
for the triple torus model with functioR equal to thez coordinate

of its vertices.

To compute the Reeb graph all papers mentioned so far use variants
of Shinagawa and Kunii’s [1991] original algorithm. However, in-
stead of computing the correct Reeb graph in®pime (wheren
is the number of edges in the triangulation) they choose a sample
based algorithm running in @(ogn) which may return incorrect
results. The only correct @(ogn) algorithm we are aware of is
due to Cole-McLaughlin et al. [2003]. They sweep the surface in

orderr(])ifunctlzn valut; magtatljnmgkf)rotﬂtslusmt% dynamic balaane(?d Figure 2: Reeb graph of the height function on the triple torus. The
search trees. As mentioned above both algoritnms requireé manitoldy, o.q yynnels of the model are mapped to three loops in the graph.
surfaces and neither of them is able to handle modern size data sets.

Wood and others [Wood et al. 2000; Wood et al. 2004] compute Points on the Reeb graph that correspond to contours passing
Reeb graphs of iso-surfaces of volumetric functions using conceptsthrough critical points ofF (maxima, minima, and saddles) are
similar to those of [Shinagawa and Kunii 1991]. Their algorithm is callednodes The rest of the Reeb graph consistaafsconnecting
streaming in the sense that they only need to keep a single slice ofthe nodes. Since, contours change topology only at critical points
the volume in memory. Besides being limited to iso-surfaces their an arc represents a family of contours that do not change topology.
algorithm implicitly uses the sweep direction as function value as For a PL function the critical points lie on the verticesMfand

we can associate nodes with verticesvbf We call a monotonic
sequence of arcs ifG a path Triangulated Mesh M Reeb Graph RG

_ CreateNode(1,w)
After describing the input mesh, the input function, and the data .

structures to represent the Reeb graph, we will describe a simple, ~____.-
robust algorithm that computes Reeb Graphs for triangulated (not ¢, (a,.0)
necessarily manifold) surfaces. Then, we describe modifications to --. _
this algorithm to (i) increase performance, (ii) compute an embed- o
ding of the Reeb graph, and (iii) to simplify Reeb graphs. Finally, -
we show in Section 3 that the identical algorithm also computes

Reeb graphs of functions defined over simplicial complexes of ar- v ng
bitrary dimensions. L (a) AN

Input Mesh. We assume the input is a sequence of vertices and ~___. ' CreateArc(L,3) f

triangles; a triangle refers to its vertices by a unique index given ey — (ao,0)
by their order of appearance. Triangles and vertices do not need to~.__
be in any particular order, except that all vertices of a triangle must ";“
appear before the triangle. We handle the Alias/Waveftaatfor-
mat, the Stanfor@LY format, and the streaming mesh format by

Isenburg and Lindstrom [2005], in addition to other formats. ng

N b h
= 4 T) :
z 5 y CreateArc(0,1) Y - i
______ . . 5 o
e1 +— (aog,) as — (eo) ag = (e, €4)
.. ny

Original vertex order Spectral sequencing X coordinate Sol 2

ag — (e1,e4q)

as — (e, eq)

ag — (e1,€eq)

ny
’,
/
ay — (e2) /
" Ny

ey — (as, 1) az = (e3,¢4)

(c) N

MergePaths(ey, €2, €4) N ,’/ f
o

ey — (agp, 1)

Y coordinate Z coordinate random

!luw Colormap high—o]

Input Function. As discussed abové, is defined using values at ‘ - €2+ (a1,1)
vertices of the input mesh. These are provided either in an addi-
tional file, given implicitly (e.g. one of the vertex coordinates), or

U1

computed at run-time. The images above show several functions as X (d)
a pseudo-coloring on the dragon mesh. Naturally, the choice of a .
function is dependent on the particular target application. * Lo RemoveEdge(e.)

e — (ag, 1)

Data Structure. We maintain two tightly coupled data-structures: e (a0, 0)

The input mesiM and the Reeb graptG. We use a standard graph ~'*~._~z-2

data structure to represent the Reeb graph. With each nokle of ey (a1, 1)

we maintain the index of its corresponding vertex. With each arc

of RG we maintain a list of pointers to edgesMfthat intersect the e = (a2,1)

contours represented by the arc. With each ezlgeM we main- LY (e)

tain a pointer to the highest (iR) arc inRG that has a pointer to ®vertex y 0 node
e. An arc ofRG represents a family of contours that do not change =~ — edge triangle — arc

topology, each of which intersects a set of edgeslinAn edge of
M intersects a family of contours that may span several args.in
In particular, an edge corresponds to a patRdnin Figure 3(a),

for example, we see agg has pointers to edges andey, because i Bl n g
ap represents contours that intersect edgeande,. Edgeey is 2,(4,... 260 269[0]a)
pointed to by arcgg anday, because it intersects contours that are \ |

represented by both the arcs. Edgestores a pointer to atm, be- ' ¢ ne)
cause it is the highest arc with a pointergp To ease traversal Node Removal Merge Paths

betweenM andRG we store extra information with each edge to ()
jump to the entry in an arc’s list that refers to that edge. In Fig-
ure 3(a), the tupléag, 1) stored with edgey tells us that the entry

in ag’s list at index 1 points back tey. Similarly, to traverse a path

in RG corresponding to edgewe store a pointer with each refer-
ence toeto the reference in the next arc in the path. In Figure 3(a),
we show these as downward pointing arrows in the Reeb graph.

Figure 3: Incremental update of the Reeb graph after inserting trian-
gle (vp,v1,Vv3). (@) When inserting vertexy; we insert a new node
into RG (Becausevp andvs are part of an existing triangle their
nodes already exist). (b-c) When inserting the edges of the triangle
we insert corresponding arcs®kg. (d) When inserting the interior

of the triangle we merge the patlj, a; with the pathag, ay to form

We will use the following operations to modify the Reeb graph: ~ the pathag,a;,a,. (e) We optimize the data structure by removing

- CREATENODE(i,w) Add a new node with indek and function any reference to the manifold edgg (f) Update of the buckets
valuew to RG, see Figure 3(a). with embedding information when merging arcsRaf

1 Function ComputeReebGraphinputFile): *
2 ForEach element in InputFileDo: =
3 If (element is vertex v) =
4 CreateNodév); =
5 Elself (element is triangle t)

6 ForEach edge e in tDo:

7 If (e is new)

8 CreateArge);

9 EndIf

10 EndFor |

11 I/l Call e0,el,e2 the edges of t, with e0,el

12 Il sharing the maximum and e0,e2 the minimum.

13 MergePathge0,el,e2);

14 ForEach edge e in tDo:

15 If (all vertices in e are finalized)

16 RemoveEdgée); %
17 EndIf £
18 EndFor 5
19 EndIf °
20 EndFor Q

1 Function MergePath§¢Edges e0,el,e2):
2 a0 = Arc(e0); al =_Ardel); a2 =_Arqe2);
3 GlueByMergeSortinga0,al,e0,el);
4 GlueByMergeSortinga0,a2,e0,e2);

1 Function GlueByMergeSortindArcs a0,al, Edges e0,el):
2 While (a0 and al are valid arcspo:

3 nO=BottomNodga0);

4 nl=BottomNoddal);

5 If (F(n0) > F(nl1))
6
7
8
9

MergeArcs(a0,al);
Else

MergeArcs(al,a0);

Endif (2) (h) (e)

10 a0 = NextArcMappedToEdg@0, e0); Figure 4: On-line update of a Reeb graph. (a) Initial mesh with
" Endv\";‘;“e: NextArcMappedToEdgeal, e1): its Reeb graph and critical points (red for max, green for saddle
and blue for min). (b-c) Triangle adding a new component. (d-

] e) Triangle connecting two components. (f-g) Triangle creating a
Table 1: Pseudocode for the core functions of the Reeb |gop. (h-e) Triangle destroying a loop.

Graph computation algorithm. The entry point is the function

- Jow

ComputeReebGraph() graph) inserting nod@; and arcsa;, a4 correctly modifies the
graph to reflect inserting vertex and edgey, e, into the mesh.

- CREATEARC(i, j) Add a new arc connecting nodend nodgj to Sweeping a level-set from bottom to top a new contour (consist-

RG, see Figure 3(b-c). ing of a single point) splits atz, evolves through edges, e, and

- MERGEPATHS(eq, €3, €y) Merge patheq, ez ,andey in RG, see merges again aty. Inserting the interior of the triangle connects

Figure 3(c-d). these new contours (represented by axGs,4) with those that in-

. . . tersect trianglgvp, vo,Vv3) (represented by the ares, ag). This
The MERGEPATHS_ operation _W|II be used to remove loops in the ;4. ces the removal of a loop i, as shown in Figure 3(c-d). The
Reeb graph, as will be described shortly. _ _ value ofF at the vertices determines which edge, heyedirectly
General Algorithm. Our algorithm proceeds by reading vertices connects the highest vertex, to the lowest vertexs, and we call
and triangles processing them in the order of appearance. Initially, the corresponding patpy = ag,a,. The paths corresponding to the
RG is empty and each time we read a new vertex or triangle we remaining two edgesy ande,, are concatenated to form a second
make an update that maintains the correct Reeb graph of all sim-pathp, = a4,a;. In RG, both paths connect the highest nodg,to
plices seen so far_, p_oss_,lbly with a_ddltlon of degr_ee-two nodes (r_e- the lowest nodens. Merging p; with p, removes the loop frorRG
moved by the optimizations described below). Figure 4 shows this and creates a single paji = ap,a;,ay, as shown in Figure 3(d).
idea for triangles that create/connect connected components or creat all times, this simple sequence of operations maintains the com-
ate/destroy loops. The pseudocode for the main functions of our plete Reeb Graph of all simplices seen so far.

algorithm is provided in Table 1.
At the end, we make a pass througt and remove degree-two

For each new vertex, we invokeREATENODE to create anew node nodes by merging their adjacent arcs. This last pass through the
in the Reeb graph. For each triangle, we first involee&TEARC data is not necessary if one of the optimizations below is applicable.
for each of its edges that has not already been seen. Inserting the inCorrectness. The natural way to show correctness of an on-line
terior of a triangle could connect disjoint contours inducing a merg- algorithm is by induction.

ing of the paths irRG that correspond to the edges of the triangle;

we invoke the MERGEPATHS operation to process the interior of ~ We first assume to have a 2D simplicial complexwith known
the triangle. Reeb graptRG. The central step of our algorithm is to simply add

a new triangld to M and updat&G accordingly (as shown in Fig-
Referring to Figure 3(a-c), we see that (starting with a correct Reeb ure 4). This operation is performed correctly by adding first the

boundary oft and then merging the arcs &t corresponding to u u
contours ofM that get connected by the interiortofThe resultis a u u

new meshM’ with correct Reeb grapkG’. v\ [—- —
Formally, given the Reeb graph of a simplicial comphxwith n ' !

triangles we can compute the Reeb graph of the simplicial complex (@) (b)

M +t havingn+ 1 triangles. Moreover, the Reeb graph for any Figure 5: (a) Maximuru is canceled with up-forking saddieby
having O triangles is the empty graph. Using this as the base for first gluing the path (shaded) frouto v onto the other path starting
the induction, we can compute the Reeb graph of any 2D simpli- atv, and then deleting nodesandv. (b) Down-forking saddle is
cial complex (no restriction to manifold or other special cases). In canceled with up-forking saddieby gluing two paths and deleting
Section 3 we also show how this algorithm can be used for higher nodesu andv.

dimensional mesh.

Optimizations. We take advantage of additional information Hg :_%Vl * r’:lvﬁ anddli; _(Pcl)NPV1_+OP20NC\)/2)/ Il;l\ﬂ//\/(utr)llesksl;lvl -

provided with the input mesh to reduce the storage requirements\ Y2 = 0 in which case\V = 0,P = (0,0,0)). If two buckets con-

of our algorithm and improve performance. To this end, we intro- tain some of the same vertices (because their arcs start and/or end at
) ! the same node), we subtract the contribution of such verticesProm

duce a new operationEMOVEEDGE(ey) that follows the path cor- : . -
responding te, and removes all occurrences@f from RG. RE- and the_decreme_nt th_e valueN¥ accordingly. This avoids count-
ing vertices multiple times.

MOVEEDGE is used, for example, when the input model is known

to be a two-manifold. In this case, an edge whose two adjacent | 3 MerGEPATHS operation two paths with the same endpoints
triangles have already been processed cannot be involved in anyyre merged into one. In this procedure we traverse the two paths
subsequent updates ké. Therefore, its reference can be removed and their buckets from top to bottom and create a unique sequence
from the graph as shown in Figure 3(e). of arcs with buckets as in a merge-sort algorithm, see Figure 3(f).

Similarly, it is often possible to determine that all triangles inCi- \yhen we remove a degree two nayét has node; adjacent from
dent to a vertex have been read in input. With this information ;pove and node, adjacent from below. We replace args,n)
one can remove an edge when both its vertices have been finalizetﬁnd (n,np) with arc (ng,np). We obtain the sequence of bhckets
(even if the mesh is non-manifold). Notice that one can process ¢, (n1’7 ny) by concateﬁating those imy, n) with those in(n, ny)

meshes in streaming mode even if they are read in the original for- g, cent for the two buckets containingvhich we merge into one if
mat and no preprocessing has been done to reorganize the data [W%hey span the same range of function values.

and Kobbelt 2003]. Moreover recent work [Isenburg et al. 2006]
has shown that finalization information can be guessed when not The update operations are more complicated if we cannot estimate
available with little performance penalty if the heuristic is wrong. the range of the function before loading the mesh. Still, we want to

To furth d the d ic st . i K . _estimate the embedding 86 using betweerk and X buckets. In
0 further reduce the dynamic storage requirements we Keep iny,q aqe we dynamically maintain the rarigye: fmax— fmin while

memory only the portions ol andRG that may be traversed or loading the mesh. Initially, the range is set to the function range

modified in the future. Therefore, we remove from memory any e first triangle or set of triangles we load in memory. The size
triangle whose edges have become manifold, and any vertex that

has become a manifold (is attached to a circular fan of triangles). ofa blffket is set o2 whereh IS the largest signed integer such
If noden; has degree two iRG, then we remove it from the graph th‘"’r‘]tk,z = Fﬁ The bucket containing the real valuehas range
and merge its two adjacent arcs into one. In this way, many nodes!i2", (i+1)2", wherei is the largest signed integer such it <

of RG can be removed without altering its structure. After several W-

applications of RMOVEEDGE some arcs oG may have empty Once we set the current parametere update the value & each
edge pointer lists. Such arcs can be removed from memory as well

since they will never be modified again (they correspond to closed time we fe_a‘?' a new input ver_te>_(. Whgne%surpasrfes@ ti;e
contours that have been completed). value ofh is incremented untiR is again betweek2" and x2".

Embedding. While constructing the Reeb graph, we also com- Thus, buckets periodically double in range while their separating

pute its embedding based on the coordinates of the input vertices V&/U€S remain stable. The adjustment of buckets happens only in
an amortized manner, immediately before an arc undergoes either a

We store with each arc an ordered sequence of buckets which par- _ .
tition the range of function value spanned by the arc. (r)r}(itr]%eg?gghnode removal. This strategy avoids repeated traversals
Assume that the overall range of the function for a give model is On-line noise removal. Real-world functions are often noisy
[0,100 and we want to subdivide it into 200 sections. With an and one can expect their Reeb graphs to be noisy as well. Any
arc a that spans values from 53to 712, we store buckets with practical use of such Reeb graphs requires noise removal. We use
separating valuegs3.5,54,54.5,...,715). Each bucket contains persistence based simplification [Edelsbrunner et al. 2000] to elimi-
an integerNV to count the number of vertices accumulated and nate insignificant extremum-saddle pairs from the Reeb graph while
a vectorP of the their average coordinates. When an arc is first it is being computed. Theersistenceof a pair of critical points
created by @EATEARC the first and last buckets contain one vertex is the absolute difference in their function values. As shown in
(the endpoints of the edge), while the rest of the buckets contain noFigure 5(a), we remove extremum-saddle pairs that are connected
vertices. For a short arc that spans only one bucket and one edgeby a sequence of finalized arcs and whose persistence is less than
its initial value isNV = 2 andP is the average of the two endpoints a user-specified value. In our experience a large portion of most
of the edge. Reeb graphs consists of noise. Removing features with persistence
less then 0.1% of the function range can shrink a graph by orders
of magnitude without loosing any significant information. The de-
noised Reeb graphs are then subjected to a more extensive analysis
goy building a coarse-to-fine hierarchy as described next.
Simplification and Hierarchy. Simplifying the Reeb graph and
When we merge two bucke(dlVi, P;) and(NV;, P,) with the same storing it in a coarse-to-fine hierarchy is a requirement for any sub-
range but from two distinct arcs we obtain a bucKke¥, P) with sequent progressive visualization and/or processing. We simplify

The basic algorithm modifies arcs in two ways (see Figure 3(f)):
(i) by a MERGEPATHS operation, and (ii) when removing a node of
degree two. In both cases we concurrently update the correspondin
buckets merging them whenever necessary.

2-skeleton
—_—

Figure 7: Two examples of Reeb graph of tetrahedral meshes often
used in scientific visualization. On the left the fighter model with
70K tetrahedra. On the ritgh the SPX model with 20K tetrahedra.

(b) cut-away view . . . i

Proof. By definition, the Reeb graph is obtained by contracting the
connected components of level-sets to points. Consider a compo-
nent of the level-set of functiofR defined on al-dimensional sim-
plicial complexM. This component is itself &d — 1)-dimensional
complex (not necessarily simplicial) made up(df- 1)-cells (de-

rived from d-simplices ofM), whose boundary aréd — 2)-cells

. K (derived from the(d — 1)-simplices ofM), and so on. E.g: In 3D, a

™ M = % level-set component is a 2-dimensional complex made up of trian-
Yyl 1\ 1-skeleton ﬁ/%ﬁ@% gles or quads (derived from tetrahedravi), bounded by edges (de-
'y ™ N = %

$13S [9A9]
$19S [9A9]

rived from triangles irM), and vertices (derived from edgesh).
{ N\

) —
[W
© e (d)
Figure 6: (a) Boundary of a tetrahedral mdghpseudo-colored
based on the distande from the marked vertex. (b) Cut-away
view of the two-skeletorM of M with the restricted functior
as pseudo-color. (c) Several level-set&ofd) One-skeleton of the
level-sets oF which are also the level-sets bf

/ % The connectedness of a level-set component is determined solely by
: / r==4 % its 1-skeleton, which is derived from the 2-skeletdrof M. Fig-

/ \ ure 6 shows a diagram that depicts how to get to the 1-skeleton of

a level-set component of functidgh defined on a tetrahedral mesh.

We can extract a level-set & defined onM and then extract its
1-skeleton, or we can restriEtto M and extract the level-set &f
defined orM. Both paths arrive at the same 1-skeleton of the level-
set component and thus produce the same Reeb graph. This proves
the theorem.

the Reeb graph using the extended persistence algorithm [Agarwal
et al. 2004] which generalizes the notion of persistence to loops.
In addition to pairing maxima witlsplit-saddlesand minima with
merge-saddlegs in regular persistence) their algorithm pairs split-
saddles with merge-saddles which form a loop in the Reeb graph.
This allows us to measure the persistence of loops and rank the
uniformly with the other topological features.

In practice, we process higher dimensional simplicial complexes by
reading each simplex and applying the algorithm directly to its two-
skeleton. Figure 7 shows the Reeb graph for two tetrahedral meshes
commonly used for testing scientific visualization codes. Figure 8
shows the Reeb graphs of the Sierpinski simplex subdivided two
Mtimes for dimensions two through five using one of the coordinates
as function. We use thiot graph drawing package to compute the

. . . layout and even though the layout is certainly not optimal one can
We compute a persistence _hlerarchy fora Reet_) graphin two phasesdigtinguish the(d+ 1) glusters gxpected in din}{ensidnp
First, we compute all possible persistence pairs. Second, we can-

cel pairs of critical points in increasing order of persistence while 4 Results and Conclusions
maintaining the sequence of simplified Reeb graphs in a partially . . .
persistent data-structure [Driscoll et al. 1989]. This data-structure W& have tested our algorithm on various models using for each
requires space proportional to that used by the original Reeb graph@ range of functions including, y, andz coordinates and some

plus the number of updates to the graph, and allows accessing thegigenvectors of thg Laplacian matrix of the input mesh (such as the
Reeb graph simplified to any persistence threshold in time propor- ©N€ used for building streaming meshes). Because the choice of

tional to the size of the output. Figure 5 shows an extremum-saddle function impacts the running time we have also tested with random
cancellation (a), and a saddle-saddle cancellation (b). Both simpli- functions that yield very large, possibly impractical Reeb graphs,
fications glue together the paths from a saddle towards its pairedPut constitute a very good test for performance and robustness. Fig-
node and remove both nodes (which now have valence two). ure 10 shows timing results for the worst case with random func-
tions and for the average running time over the other functions. For
Combined with the de-noising step described above we generate thecomparison we also plot the mesh load times and the ideal linear
persistence hierarchy of all models using moderate resources. Foscalability line. All tests were performed on a MacBookPro 2.3Ghz
example, we process the St. Matthew using a maximum of 150MB Intel Dual Core processor, with 2GB of main memory.
of memory. Once computed, we store the hierarchy on file in a
coarse-to-fine order to enable progressive processing. In the file
header, we provide a look-up table of memory usage of the Reeb
graph at each simplification level to guide the user on how fine a
persistence level one can load with fixed memory resources.

Our experiments show that, in practice, our new algorithm scales
linearly both in the average and in the worst case where the running
time doubles. At the high end we can compute the Reeb graph of
the St. Matthew model with roughly 372 million triangles in just
over eight minutes on average, see Table 2. Given the theoretical
3 Higher Dimensional Meshes lower bound ofo(nlogn) for the computation of the Reeb graph on
2-manifolds these results are very encouraging.
The algorithm described above is very general and applies to sim-

plicial meshes of any dimension on the basis of the following theo- Furthermore, we have the option of running in “out-of-core” mode
rem: in which the finalized parts of the data structures are removed on-

the-fly and the results written to disk immediately. The last two
columns of Table 2 and Figure 10(in red) show the memory used
when running out-of-core. We can compute the Reeb graph of the

Theorem. The Reeb graph of a function F, defined on the sim-
plicial complex M, is identical to the Reeb graph of a function
the restriction of F to the 2-skeletdvi of M.

Performance of RG computation for different functions
2D: Model f=x f=y f=z f =random| conv.
time/ mem | time/ mem | time/ mem | time/ mem | time
cow 0.1s/ 33KB| 0.1s/ 23KB 0.1s/ 33KB 0.1s/ 33KB 0.1s
felinedk 0.1s/ 66KB 0.1s/ 66KB 0.1s/ 66KB 0.1s/ 94KB 0.1s|
indian goddess 0.1s/ 47KB 0.1s/ 47KB 0.1s/ 47KB 0.1s/ 47KB/ 0.3s|
3D: turtle 0.2s/4.1MB 0.2s/ 4.1MB 0.2s/ 4.1MB 0.2s/4.1IMB 0.4s|
heptoroid 0.2s/1.5MB 0.2s/ 1.5MB 0.2s/ 1.5MB 0.2s/1.5MB 0.4s|
dancer 0.2s/1.5MB 0.2s/ 1.8MB 0.2s/ 1.8MB 0.2s/1.8MB 0.3s|
Py elephant 0.2s/0.1MB 0.2s/ 0.1MB 0.2s/ 0.1MB 0.2s/0.2MB 0.4s|
0 "‘_'{2:%"'@ ganesh 1.1s/0.4MB 1.1s/0.4MB 1.3s/ 0.3MB 1.1s/0.4MB 1.9s
/l'“{dl("*“" ""‘t‘\"' ““"r”""‘“ dragon 2.2s/1.0MB 2.2s/1.0MB 2.3s/ 1.0MB 2.2s/1.0MB 4.5s
4D: &-‘;5 ,.«.-o W"' s goddess2 3.85/0.4MB 3.7s/ 0.4MB 4.2s/ 0.4MB 3.85/0.4MB 3.6s
A Laa b m*"td‘% s i happy buddha| 2.7s/1.0MB 2.7s/ 1.5MB 2.9s/ 1.0MB 2.7s/1.0MB 5.6s
»' A — '*‘&.‘v gargoyle 4.6s/1.0MB 4.3s/ 1.0MB 4.4s/ 1.0MB 4.3s/1.0MB 5.6s|
malay. goddess 9.8s/0.7MB 9.7s/ 0.7MB 11s/ 0.5MB 9.9s/0.7MB 9.6s|
%500 asian dragon 16s/ 16MB| 16s/ 16MB 16s/ 16MB| 16s/ 16MB| 28s|
g“.‘. thai-statue 31s/ 16MB| 30s/ 16MB| 31s/ 16MB| 30s/ 16MB 40s|
':"x ‘-‘\\ Lucy 1.8m/ 94MB| 1.8m/ 94MB| 1.8m/ 94MB| 1.7m/ 94MB| 72s
5D: A -m‘\&\‘ }21",,‘_“...‘“-'-_!-_‘ David 2.1m/8.3MB| 2.2m/ 8.3MB 14m/528MB| 2.1m/8.3MB| 2.6m
t "‘3‘ SN &w:;zzl"’ StMatthew 15m/8.3MB| 3.8h/376MB 16m/ 16MB| 15m/8.3MB| 25m

ey
508
‘w".i‘.‘-\“\:z" ”
.‘e. Qo zee"
0o o ‘vk o’l'
BeneSe

Table 3: Performance of the Reeb graph computation for models
stored in the original triangle order. For each model we report com-
putation time and memory usage for four functions. We report also

Figure 8: Reeb graphs of the Sierpinski simplex of dimension two the preprocessing time to add the finalization information to the file.
to five subdivided twice. We use one of the coordinates as function

value, shown here in grayscale. but remain comparable to those obtained for the optimal stream-

Model name | numperof | RGcomputetime | Load | Mem. usage ing meshes re-arranged in spectral order [Isenburg and Lindstrom
triangles max | avg | time min max 2005]. This is due to the fact that most meshes are in fact created
f;‘i’r:Mk :gg g-g;z g-giz 8-82 ézig gii: with some degree of coherency and our algorithm is able to exploit
indian goddess 19Kt 0.13s| 0.10s| 0.28s| 47KB | 47KB such COherenCy when present.
turtle 38Kt 0.08s| 0.06s(0.07s| 4.1MB | 4.1MB Notice, that computing the finalization information is not an ex-
ZZE‘C‘::"“ ggi: 8'232 8'(1)?2 g'gg: igmg i'gmg pensive operation. Given a mesh without finalization we perform
elephant 50Kt 0.10s | 0.05s | 0.05s | 0.1MB | 0.1MB a prellmlnar_y pass counting the number_ of trlangl_es ;hat use each
ganesh 213Kt 11s| 0.85s| 0.8s| 02MB | 0.3MB vertex. During the second read the vertices are finalized vx_/hen all
dragon 871Kt 18s| 1.0s| 08s!| 01mB | 0.1MB their triangle references have been counted. Naturally, this oper-
goddess2 1.0Mt 31s| 23s| 1.9s| 0.3MB | 0.3VB ation is independent of the input function and it is usually better
happy-buddha 1.1Mt 28s| 14s| 52s| 0.3MB | 0.3MB to add finalization information to the file to avoid re-computation.
gargoyle 1.7Mt 42s| 32s| 3.5s| 1.0MB | 1.0MB For completeness we report in Table 3 the finalization times for
malay. goddess 3.6Mt l4s| 95s| 7.0s| 0.5MB | 0.7MB each mesh in the original triangle order. Notice that the finalization
asian-dragon 7.2Mt 23s| 8.7s| 7.4s| 0.5MB | 0.5MB time is often dominated by the file /O given the massive sizes of
:_h:g's'tat“e ;gm: 1212 igz ‘213: ;'m: ;'m: the original ply files and uncompressed output obj file. For exam-
Da\}i’d SEML 218s | 108s| oas| 21me | 2.1MB ple t_he StMatthew model hi_iS a 7.3GB input and 16GB output, the
StMatthew 371Mt 1448s| 486s| 311s | 8.4MB | 8.4MB David model has a 1.0GB input and 2.3GB output, and the Lucy

model has a 0.5GB input and 1.0GB output. Still, we are now able
Table 2: Performance results for a variety of models. Running times 1© Process all these models on a commodity laptop computer.

for in-core and memory usage for out-of-core computation. Application. To demonstrate one application of our algorithm
we use Reeb graphs to find and highlight small defects in geomet-
ric models. In particular, we can detect small manifold handles and

St. Matthew model using between 8.3MB of main memory in the tunnels and are not restricted to just finding non-manifold or miss-

best case and 376MB in the worst case. This makes Reeb graphng triangles. The former defects are global in nature and therefore

computations for even the largest available models feasible on com-muych harder to detect than the latter which can be found by check-
modity hardware. Surprisingly, due to the streaming nature of the ing a local neighborhood.

algorithm the out-of-core computation has nearly no impact on the
overall run-time. For example, the David computes in 218 seconds For each model we plot the number of loops above a certain persis-
in-core versus 220 seconds out-of-core and Lucy in 102 seconds in-tence (as a percentage of function range) creating one-dimensional
core versus 105 seconds out-of core. Coupled with the on-line noisegraphs, see Figure 9. These plots indicate both the topological com-
removal described in Section 2 we process the St. Matthew modelplexity of a model as well as a threshold separating noise from
(using a reasonable function) from original surface to progressively features. Figure 9 shows three different examples: The plot for
stored Reeb graph using never more than 150MB of memory. the Botijo on the left shows one very small and five larger fea-
tures. A closer inspection reveals that, although completely man-
To study the dependency of the performance of our algorithm on the ifold, the model contains some folded triangles creating a hidden
layout of the input data we report in Table 3 the Reeb graph com- tunnel. This flaw is not visible in standard rendering yet will ad-
putation time and memory usage for the meshes in their original versely impact most geometric processing, e.g. simplification or
(.PLY) order after adding vertex finalization. Table 3 also reports parametrization. The plot for the Malaysian Goddess in the middle
the preprocessing time to compute this finalization. We observe of Figure 9 shows a large flat region that separates the topological
that in most cases the running times and memory usage increasenoise from the two desired tunnels. The close-ups above the plot

Malaysian

26114

10000

number of loops
number of loops

1000

>
3

number of loops

S

‘\

01 001 0.01 0.1

persistence

persistence

1
0.001 0.01 0.1 1

persistence

Figure 9: Finding small defects in surfaces:(Bottom) Plots of the number of loops in the Reeb graph above a given persistence for the Botijo,
Malaysian Goddess, and St. Matthew model. The persistence is a percentage of the range of the function used to compute the Reeb graph.
Both axis use a logarithmic scale and span several orders of magnitude. (Top) Close-up views of the neighborhood around small topological

defects detected using the Reeb graph.

highlight the neighborhood around one small loop revealing a very
thin handle, likely an artifact of the surface reconstruction process.
The plot for St. Matthew on the right of Figure 9 shows no flat re-

gion and its largest loop has a comparatively low persistence. This

shape analysis. IRroc. of Spring Conf. on Comp. Grapi.75—
184.

BIAsOTTI, S. 2001. Topological techniques for shape under-
standing. InCentral European Seminar on Computer Graphics,

is expected as the model ideally has genus zero and all tunnels and CESCG 2001
handles are in fact noise. The close-up view shows a small tunnelcarr, H., SNOEYINK, J., AND AXEN, U. 2003. Computing

at the back of the statue.

Conclusions. In conclusion, we have presented a novel algorithm

to compute, simplify, and hierarchically re-organize Reeb graphs of
very large data sets without restrictions on dimension or complex-
ity of the input. This represents a significant improvement over of

the state-of-the-art relevant to a broad range of applications. In par-
ticular, when combined with the embedding discussed above, our

algorithm immediately increases the range of applicability of most
algorithms mentioned in Section 1 by several orders of magnitude.
Despite its broad impact, our algorithm is easy to implement, ro-
bust, and can be run on commodity hardware.

Acknowledgments We thank P. Lindstrom and M. Isenburg for

contour trees in all dimensionsgComput. Geom. Theory Appl.
24, 3, 75-94.

CARR, H., SNOEYINK, J.,AND VAN DE PANNE, M. 2004. Sim-
plifying flexible isosurfaces using local geometric measures. In
VIS '04: Proceedings of the IEEE Visualization 200197-504.

CHIANG, Y.-J., LENZ, T., LU, X., AND ROTE, G. 2005. Simple
and optimal output-sensitive construction of contour trees using
monotone pathsComp. Geom.: Theory and App.,38 165—
195.

CoLE-McCLAUGHLIN, K., EDELSBRUNNER H., HARER, J.,
NATARAJAN, V., AND PAscuccl, V. 2003. Loops in reeb
graphs of 2-manifolds. IRroceedings of the 19th Annual Sym-

giving us access to their streaming meshes. The video associated Posium on Computational GeomgtACM Press, 344-350.

with this paper was edited by E. Cronshagen and R. Gaunt.

This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

This work was supported by the Director, Office of Advanced Sci-
entific Computing Research, Office of Science, of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231 through
the Scientific Discovery through Advanced Computing (SciDAC)
program’s Visualization and Analytics Center for Enabling Tech-
nologies (VACET).

References

AGARWAL, P. K., EDELSBRUNNER H., HARER, J.,AND WANG,
Y. 2004. Extreme elevation on a 2-manifold. $€G '04: Pro-
ceedings of the ACM Symp. on Computational Geomagy—
365.

ATTENE, M., BIASOTTI, S.,AND SPAGBUOLO, S. 2001. Remesh-
ing techniques for topological analysis. Pmoc. of Shape Mod-
eling Internationa) 142—-153.

BIASOTTI, S., MORTARA, M., AND SPAGNUOLO, M. 2000.

Surface compression and reconstruction using Reeb graphs and

DRISCOLL, J. R., 3\RNAK, N., SLEATOR, D. D., AND TARJAN,

R. E. 1989. Making data structures persistent.J.€omput.
Sys. Sgivol. 38, 86-124.

EDELSBRUNNER H., LETSCHER D., AND ZOMORODIAN, A.
2000. Topological persistence and simplification FIBCS ’00:
Proceedings of the 41st Annual Symposium on Foundations of
Computer Sciencel54.

FUNKHOUSER, T., AND KAZHDAN, M. 2004. Shape-based re-
trieval and analysis of 3D models. 8iIGGRAPH '04: Proceed-
ings of the conference on SIGGRAPH 2004 course n&ieM
Press, New York, NY, USA, 16.

HILAGA, M., SHINAGAWA, Y., KOHMURA, T.,AND KuNII, T. L.
2001. Topology matching for fully automatic similarity estima-
tion of 3D shapes. IfProceedings of ACM SIGGRPAH 2Q01
E. Fiume, Ed., ACM, 203-212.

ISENBURG, M., AND LINDSTROM, P. 2005. Streaming meshes.
In Proceedings of the IEEE Visualization 2005 (VIS 0lEE
Computer Society, 231-238.

ISENBURG, M., LINDSTROM, P., QUMHOLD, S., AND SHEW-

CHUK, J. 2006. Streaming compression of tetrahedral volume

meshes. IProceedings of Graphics Interface 20a6.5-121.

100MB T + 100Ksec
10MB T
+ 10Ksec
MB 4 1hour
+ lksec
100KB T
+ 100sec
10KB 1 1min
1KB + + 10sec
100B +
+ lsec
10B T
+ 0.1sec
1B+
1Kt 10Kt 100Kt 1Mt 10Mt 100Mt 1Gt

- Min Mem —A—Max Mem Time Lin. Scale -#-AvgRunTime -A-MaxRunTime -0-Read Time

Figure 10: Performance measurements for the Reeb graph computation algorithm. We consider models from 6K triangles (Cow) to 372M
triangles (St. Matthew statue). For reasonable input functions (blue squares) we achieve consistent processing speeds of about 800K-900K
triangles per second. In stress tests with a random function (blue triangles) the performance decreases to about 400k-500Kk triangles per
second. The running time is roughly twice the time needed for loading the input mesh (green circles) in compressed streaming format. The
red plots show minimum (squares) and maximum (triangles) memory usage among all tests.

LAZARUS, AND VERROUST A. 1999. Level set diagrams of poly- STEINER, D., AND FISCHER, A. 2002. Cutting 3D freeform ob-
hedral objects. IfProceedings of the fifth ACM Symposium on jects with genus-n into single boundary surfaces using topologi-

Solid mMdeling and Application®\CM Press, 130-140. cal graphs. IrSMA '02: Proceedings of the seventh ACM sym-
NI, X., GARLAND, M., AND HART, J. C. 2004. Fair morse func- posium on Solid modeling and applicatioB86—-343.

tions for extracting the topological structure of a surface mesh. TAKAHASHI, S., SHINAGAWA, Y., AND KuNiI, T. L. 1997. A

ACM Trans. on Graphics (TOG)613-622. feature-based approach for smooth surfaces.Proc. of the

Pascuccl, V., AND COLE-MCLAUGHLIN, K. 2003. Parallel Fourth Symp on Solid Modeling and Applicatidi:110.

computation of the topology of level setdlgorithmica 38 1 VAN KREVELD, M. J., VAN OOSTRUM, R., BAJAJ, C. L., PAS-
(Oct.), 249-268. cuccl, V., AND SCHIKORE, D. 1997. Contour trees and small

seed sets for isosurface traversal. Symposium on Computa-
tional Geometry212—-220.
WEBER, G., SCHEUERMANN, G., HAGEN, H., AND HAMANN,

REEB, G. 1946. Sur les points singuliers d’'une forme de pfaff com-
pletement intergrable ou d'une fonction numerique [on the sin-
gular points of a complete integral pfaff form or of a numerical B. 2002 E h)) L

. . - . . . Exploring scalar fields using critical isovaluesPioc.
function]. Comptes Rendus Acad.Science Pa.rls,m 849. IEEE Visualization '02 IEEE Computer Society Press, IEEE,

SHINAGAWA, Y., AND KuUNII, T. 1991. Constructing a Reeb graph 171-178.
automatically from cross sectiol&EE Computer Graphicsand \woop 7. J.. DESBRUN. M. SCHRODER P., AND BREEN

Applications 1144-51. D. E. 2000. Semi-regular mesh extraction from volumes. In
SHINAGAWA, Y., KUNII, T., AND KERGOSIEN Y. L. 1991. Sur- Proc. IEEE Visualization '00 IEEE Computer Society Press,

face coding based on Morse theoffEEE Computer Graphics Los Alamitos California, 275-282.

and Applications 1166-78. WoobD, Z., HoPPE H., DESBRUN, M., AND SCHRODER, P.
STEINER, D., AND FISCHER, A. 2001. Topology recognition of 2004. Removing excess topology from isosurfade&SM Trans.

3D closed freeform objects based on topological graphSMéA Graphics (TOG) 232, 190-208.

'01: Proceedings of the sixth ACM symposium on Solid modeling Wu, J., AND KOBBELT, L. 2003. A stream algorithm for the
and applicationsACM Press, New York, NY, USA, 305-306. decimation of massive meshes.Rroc. Graph. Interf, 185-192.

