
Robust On-line Computation of Reeb Graphs:
Simplicity and Speed∗

Valerio Pascucci
CASC - LLNL / CS - UC DAVIS

pascucci@acm.org

Giorgio Scorzelli
CASC - LLNL

scrgiorgio@cogesic.it

Peer-Timo Bremer
CASC - LLNL

ptbremer@acm.org

Ajith Mascarenhas
CASC - LLNL

mascarenhas1@llnl.gov

Figure 1: (Top row) Simplified Reeb graphs of the Dancer, Malaysian Goddess, Happy Buddha; and David together with two close-ups
showing a tiny tunnel at the base of David’s leg. The pseudo-colored surfaces show the function used for computing the Reeb graph. The
transparent models show the structure of the Reeb graph and its embedding. (Bottom row) The Heptoroid model and two levels of resolution
for the Reeb graph of the Asian Dragon model.

Abstract
Reeb graphs are a fundamental data structure for understanding and
representing the topology of shapes. They are used in computer
graphics, solid modeling, and visualization for applications ranging
from the computation of similarities and finding defects in complex
models to the automatic selection of visualization parameters.

We introduce anon-linealgorithm that reads a stream of elements
(vertices, triangles, tetrahedra, etc.) and continuously maintains the
Reeb graph of all elements already read. The algorithm isrobust
in handling non-manifold meshes andgeneralin its applicability to
input models of any dimension.

Optionally, we construct a skeleton-like embedding of the Reeb
graph, and/or remove topological noise to reduce the output size.

∗For more information about the project see:
http://pascucci.org/research/topology/reeb-graph/

For interactive multi-resolution navigation we also build a hierar-
chical data structure which allows real-time extraction of approxi-
mated Reeb graphs containing all topological features above a given
error threshold.

Our extensive experiments show both high performance and prac-
tical linear scalability for meshes ranging from thousands to hun-
dreds of millions of triangles. We apply our algorithm to the largest,
most general, triangulated surfaces available to us, including 3D,
4D and 5D simplicial meshes. To demonstrate one important appli-
cation we use Reeb graphs to find and highlight topological defects
in meshes, including some widely believed to be “clean.”

1 Introduction
The Reeb graph [Reeb 1946] is a fundamental data structure that
encodes the topology of a shape. It is obtained by contracting
to a point the connected components of the level-sets (also called
contours) of a function defined on a mesh. The Reeb graph has
been used extensively in a wide range of applications such as
shape matching [Hilaga et al. 2001] and encoding [Shinagawa et al.
1991; Lazarus and Verroust 1999; Takahashi et al. 1997], com-
pression [Biasotti et al. 2000], surface parameterization [Steiner
and Fischer 2002], and iso-surface remeshing [Wood et al. 2000]
and simplification [Wood et al. 2004]. Reeb graphs can determine
whether a surface has been reconstructed correctly, indicate prob-
lem areas, and can be used to encode and animate a model. Topo-
logical concepts such as the Reeb graph are especially useful in
processing massive models like those generated by high-resolution
laser range scans. However, we are aware of only two gener-



ically applicable algorithms [Shinagawa and Kunii 1991; Cole-
McLaughlin et al. 2003] to compute Reeb graphs neither of which
is able to handle even moderately size surfaces. Both algorithms
require a global sorting step, expensive temporary data structures,
and most importantly demand the input to be a manifold surface.
None of these requirements can be fulfilled for models such as the
David shown in Figure 1(top-right).

This paper presents a new algorithm to compute Reeb Graphs in an
on-line fashion. The algorithm is fast, scales linearly in practice,
and handles virtually any simplicial mesh without restrictions on
dimension or complexity. When available, the algorithm takes ad-
vantage of coherency in the input (even one not as perfect as the one
constructed in [Isenburg and Lindstrom 2005]), and computes Reeb
graphs of massive models using a small memory footprint. Further-
more, our algorithm naturally handles non-manifold surfaces. As
we prove in Section 3 this property is sufficient to compute Reeb
graphs for meshes of any dimension and we show three, four, and
five-dimensional examples.

During the on-line computation we can create an embedding of the
Reeb graph similar to the one described in [Lazarus and Verroust
1999] which provides a medial-axis-type skeleton representation of
the surface. The skeleton can be used to model or animate the sur-
face as well as to display the Reeb graph itself. If necessary, we
also remove topological noise on-the-fly to avoid creating unneces-
sarily large graphs. Finally, we process the Reeb graph to create a
progressive layout that provides real-time access to the graph in a
coarse to fine manner. This allows the handling of massive graphs
on moderate hardware and makes them available for various appli-
cations such as topological simplification [Wood et al. 2004].
Prior work. Reeb graphs, and especially their loop-free special-
ization called contour trees, are popular in computer graphics and
visualization. In [1991] Shinagawa et al. first introduced Reeb
graphs to the computer graphics community using them to construct
surfaces. In a later related paper Takahashi et al. [Takahashi et al.
1997] enhance the Reeb graph with certain flow curves on the sur-
face to create a control net used to encode smooth surfaces. Biasotti
and others [Biasotti 2001; Attene et al. 2001; Biasotti et al. 2000]
reconstruct, compress, and analyze surfaces based on related con-
cepts. Along a slightly different line, Hilaga et al. [2001] use Reeb
graphs of an approximated all-pairs-shortest-distance function on a
surface to find shapes in a data base. A more extensive collection
of similar ideas can be found in [Funkhouser and Kazhdan 2004].
Steiner and Fisher [2002; 2001] are interested in cutting an arbi-
trary surface into a disk and to this end store selected level-sets
along edges of the Reeb graph. A handle in the surface is opened
by cutting along the level-set stored in the loop of the Reeb graph
corresponding to the handle. Ni et al.[2004] solve the same prob-
lem by computing a “fair” Morse function on the surface and use
its Morse complex to define the cuts.

To compute the Reeb graph all papers mentioned so far use variants
of Shinagawa and Kunii’s [1991] original algorithm. However, in-
stead of computing the correct Reeb graph in O(n2) time (wheren
is the number of edges in the triangulation) they choose a sample
based algorithm running in O(nlogn) which may return incorrect
results. The only correct O(nlogn) algorithm we are aware of is
due to Cole-McLaughlin et al. [2003]. They sweep the surface in
order of function value maintaining fronts using dynamic balanced
search trees. As mentioned above both algorithms require manifold
surfaces and neither of them is able to handle modern size data sets.
Wood and others [Wood et al. 2000; Wood et al. 2004] compute
Reeb graphs of iso-surfaces of volumetric functions using concepts
similar to those of [Shinagawa and Kunii 1991]. Their algorithm is
streaming in the sense that they only need to keep a single slice of
the volume in memory. Besides being limited to iso-surfaces their
algorithm implicitly uses the sweep direction as function value as

thus is restricted to one of the three coordinate functions.

Contour trees are widely used in visualization and even a limited
survey of related work is beyond the scope of this paper. Standard
algorithms to compute contour trees in any dimension can be found
in [Carr et al. 2003] and [Chiang et al. 2005] and an extension which
augments the tree with information about the genus of the level-sets
in [Pascucci and Cole-McLaughlin 2003]. Some of the more popu-
lar applications include the acceleration of level-set extraction [van
Kreveld et al. 1997], simplification of level-sets [Carr et al. 2004],
and the automatic design of transfer functions [Weber et al. 2002].
Contributions. One fundamental novelty of our algorithm is the
ability to achieve practical efficiency while eliminating the need to
sort the mesh. In particular, this paper provides contributions in
four areas. We:
(i) Introduce a robust algorithm to compute Reeb graphs for simpli-
cial meshes using a stream of local updates. The algorithm naturally
takes advantage of coherency in the input and makes effective use
of auxiliary information such as knowing that the input is a mani-
fold or explicit vertex finalization;
(ii) Compute a simplification and a good embedding of the Reeb
graph with a small performance overhead of less than 5% of the
overall running time;
(iii) Prove and demonstrate how the same algorithm can be used
to compute Reeb Graphs of tetrahedral and higher dimensional
meshes; and
(iv) Provide extensive empirical evidence showing high perfor-
mance (processing 500K to 800K triangles per second) and prac-
tical linear scalability up to the largest models available to us. In
particular we compute the Reeb graph of the St. Matthew model,
with 372M triangles, in 486 seconds using less than 20MB of main
memory.

2 Reeb Graphs
Given a simplicial meshM with a piecewise linear (PL) function
F sampled at its vertices, thelevel-setat a values is defined as the
set of points inM with function value equal tos. We analyze the
evolution of the connected components of the level-sets ofF called
contours.

TheReeb graphRG of F is obtained by contracting the contours of
F to points. An example of this construction is shown in Figure 2
for the triple torus model with functionF equal to thez coordinate
of its vertices.
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Figure 2: Reeb graph of the height function on the triple torus. The
three tunnels of the model are mapped to three loops in the graph.

Points on the Reeb graph that correspond to contours passing
through critical points ofF (maxima, minima, and saddles) are
callednodes. The rest of the Reeb graph consists ofarcsconnecting
the nodes. Since, contours change topology only at critical points
an arc represents a family of contours that do not change topology.
For a PL function the critical points lie on the vertices ofM and



we can associate nodes with vertices ofM. We call a monotonic
sequence of arcs inRG apath.

After describing the input mesh, the input function, and the data
structures to represent the Reeb graph, we will describe a simple,
robust algorithm that computes Reeb Graphs for triangulated (not
necessarily manifold) surfaces. Then, we describe modifications to
this algorithm to (i) increase performance, (ii) compute an embed-
ding of the Reeb graph, and (iii) to simplify Reeb graphs. Finally,
we show in Section 3 that the identical algorithm also computes
Reeb graphs of functions defined over simplicial complexes of ar-
bitrary dimensions.

Input Mesh. We assume the input is a sequence of vertices and
triangles; a triangle refers to its vertices by a unique index given
by their order of appearance. Triangles and vertices do not need to
be in any particular order, except that all vertices of a triangle must
appear before the triangle. We handle the Alias/WavefrontOBJ for-
mat, the StanfordPLY format, and the streaming mesh format by
Isenburg and Lindstrom [2005], in addition to other formats.

X coordinateSpectral sequencingOriginal vertex order

Y coordinate Z coordinate random

Colormaplow high

Input Function. As discussed above,F is defined using values at
vertices of the input mesh. These are provided either in an addi-
tional file, given implicitly (e.g. one of the vertex coordinates), or
computed at run-time. The images above show several functions as
a pseudo-coloring on the dragon mesh. Naturally, the choice of a
function is dependent on the particular target application.

Data Structure. We maintain two tightly coupled data-structures:
The input meshM and the Reeb graphRG. We use a standard graph
data structure to represent the Reeb graph. With each node ofRG
we maintain the index of its corresponding vertex. With each arc
of RG we maintain a list of pointers to edges ofM that intersect the
contours represented by the arc. With each edgee∈ M we main-
tain a pointer to the highest (inF) arc in RG that has a pointer to
e. An arc ofRG represents a family of contours that do not change
topology, each of which intersects a set of edges inM. An edge of
M intersects a family of contours that may span several arcs inRG.
In particular, an edge corresponds to a path inRG. In Figure 3(a),
for example, we see arca0 has pointers to edgese1 ande4, because
a0 represents contours that intersect edgese1 ande4. Edgee4 is
pointed to by arcsa0 anda2, because it intersects contours that are
represented by both the arcs. Edgee4 stores a pointer to arca0 be-
cause it is the highest arc with a pointer toe4. To ease traversal
betweenM andRG we store extra information with each edge to
jump to the entry in an arc’s list that refers to that edge. In Fig-
ure 3(a), the tuple(a0,1) stored with edgee4 tells us that the entry
in a0’s list at index 1 points back toe4. Similarly, to traverse a path
in RG corresponding to edgee we store a pointer with each refer-
ence toe to the reference in the next arc in the path. In Figure 3(a),
we show these as downward pointing arrows in the Reeb graph.

We will use the following operations to modify the Reeb graph:
- CREATENODE(i,w) Add a new node with indexi, and function
valuew to RG, see Figure 3(a).

Triangulated Mesh

e3 7→ (a2, 1)

e1 7→ (a0, 0)

M

v0

v2

v3

e4 7→ (a0, 1)

a2 7→ (e3, e4)

a0 7→ (e1, e4)
n0

n2

n3

n1

v1

CreateNode(1, w)
f

(a)

Reeb Graph RG

e3 7→ (a2, 1)

e1 7→ (a0, 0)

v0

v2

v3

e4 7→ (a0, 1)

a2 7→ (e3, e4)

a0 7→ (e1, e4)
n0

n2

n3

a1 7→ (e2)e2 7→ (a1, 0)

v1

n1

CreateArc(1, 3) f

(b)

e3 7→ (a2, 1)

e1 7→ (a0, 0)

v0

v2

v3

e4 7→ (a0, 1)

a2 7→ (e3, e4)

a0 7→ (e1, e4)
n0

n2

n3

e2 7→ (a1, 0) a1 7→ (e2)

a4 7→ (e0)
e0 7→ (a4, 0)

v1

n1

fCreateArc(0, 1)

(c)

e2 7→ (a1, 1)

e0 7→ (a0, 1)

e3 7→ (a2, 1)

e1 7→ (a0, 0)

v0

v1

v2

v3

e4 7→ (a0, 2)

a2 7→ (e2, e3, e4)

a1 7→ (e1, e2, e4)

a0 7→ (e1, e0, e4)
n0

n1

n2

n3

v1

MergePaths(e0, e2, e4) f

(d)

e2 7→ (a1, 1)

e0 7→ (a0, 1)

edge
triangle

e3 7→ (a2, 1)

e1 7→ (a0, 0)

v0

v1

v2

v3

a2 7→ (e2, e3)

a1 7→ (e1, e2)

a0 7→ (e1, e0)
n0

n1

n2

n3

v1

e4

RemoveEdge(e4) f

node

arc

(e)
vertex

(f)

1, (0, . . .)

3, (3, . . .) 2, (1, . . .)

1, (0, . . .)

2, (4, . . .)

4, (3, . . .)

(1, . . .)

4, (3, . . .)

1, (0, . . .)

2, (4, . . .)

4, (2.5, ...)

7, (. . .)

3, (. . .)

4, (. . .)

2, (. . .)

4, (. . .)

2, (. . .)

1, (. . .)

2, (. . .)

4, (. . .)

3, (...)

2, (...) 3, (. . .)

2, (. . .)

4, (. . .)

Node Removal

7, (...)

2, (...)

Merge Paths

Figure 3: Incremental update of the Reeb graph after inserting trian-
gle (v0,v1,v3). (a) When inserting vertexv1 we insert a new node
into RG (Becausev0 and v3 are part of an existing triangle their
nodes already exist). (b-c) When inserting the edges of the triangle
we insert corresponding arcs inRG. (d) When inserting the interior
of the triangle we merge the patha4,a1 with the patha0,a2 to form
the patha0,a1,a2. (e) We optimize the data structure by removing
any reference to the manifold edgee4. (f) Update of the buckets
with embedding information when merging arcs ofRG.



1 Funct ion ComputeReebGraph( I n p u t F i l e ) :
2 ForEach e lemen t i n I n p u t F i l e Do :
3 I f ( e lemen t i s v e r t e x v )
4 CreateNode( v ) ;
5 E l s e I f ( e lemen t i s t r i a n g l e t )
6 ForEach edge e i n t Do :
7 I f ( e i s new )
8 Crea teArc( e ) ;
9 EndIf

10 EndFor
11 / / Ca l l e0 , e1 , e2 t h e edges o f t , w i t h e0 , e1
12 / / s h a r i n g t h e maximum and e0 , e2 t h e minimum .
13 MergePaths( e0 , e1 , e2 ) ;
14 ForEach edge e i n t Do :
15 I f ( a l l v e r t i c e s i n e a r e f i n a l i z e d )
16 RemoveEdge( e ) ;
17 EndIf
18 EndFor
19 EndIf
20 EndFor�
1 Funct ion MergePaths( Edges e0 , e1 , e2 ) :
2 a0 = Arc( e0 ) ; a1 = Arc( e1 ) ; a2 = Arc( e2 ) ;
3 GlueByMergeSor t ing( a0 , a1 , e0 , e1 ) ;
4 GlueByMergeSor t ing( a0 , a2 , e0 , e2 ) ;�
1 Funct ion GlueByMergeSor t ing( Arcs a0 , a1 , Edges e0 , e1 ) :
2 While ( a0 and a1 a r e v a l i d a r c s )Do :
3 n0=BottomNode( a0 ) ;
4 n1=BottomNode( a1 ) ;
5 I f ( F ( n0 ) > F ( n1 ) )
6 MergeArcs( a0 , a1 ) ;
7 Else
8 MergeArcs( a1 , a0 ) ;
9 EndIf

10 a0 = NextArcMappedToEdge( a0 , e0 ) ;
11 a1 = NextArcMappedToEdge( a1 , e1 ) ;
12 EndWhile�

Table 1: Pseudocode for the core functions of the Reeb
Graph computation algorithm. The entry point is the function
ComputeReebGraph().

- CREATEARC(i, j) Add a new arc connecting nodei and nodej to
RG, see Figure 3(b-c).
- MERGEPATHS(eα ,eβ ,eγ ) Merge pathseα ,eβ ,andeγ in RG, see
Figure 3(c-d).

The MERGEPATHS operation will be used to remove loops in the
Reeb graph, as will be described shortly.
General Algorithm. Our algorithm proceeds by reading vertices
and triangles processing them in the order of appearance. Initially,
RG is empty and each time we read a new vertex or triangle we
make an update that maintains the correct Reeb graph of all sim-
plices seen so far, possibly with addition of degree-two nodes (re-
moved by the optimizations described below). Figure 4 shows this
idea for triangles that create/connect connected components or cre-
ate/destroy loops. The pseudocode for the main functions of our
algorithm is provided in Table 1.

For each new vertex, we invoke CREATENODE to create a new node
in the Reeb graph. For each triangle, we first invoke CREATEARC
for each of its edges that has not already been seen. Inserting the in-
terior of a triangle could connect disjoint contours inducing a merg-
ing of the paths inRG that correspond to the edges of the triangle;
we invoke the MERGEPATHS operation to process the interior of
the triangle.

Referring to Figure 3(a-c), we see that (starting with a correct Reeb

Figure 4: On-line update of a Reeb graph. (a) Initial mesh with
its Reeb graph and critical points (red for max, green for saddle
and blue for min). (b-c) Triangle adding a new component. (d-
e) Triangle connecting two components. (f-g) Triangle creating a
loop. (h-e) Triangle destroying a loop.

graph) inserting noden1 and arcsa1, a4 correctly modifies the
graph to reflect inserting vertexv1 and edgese0, e2 into the mesh.
Sweeping a level-set from bottom to top a new contour (consist-
ing of a single point) splits atv3, evolves through edgese2, e0, and
merges again atv0. Inserting the interior of the triangle connects
these new contours (represented by arcsa1, a4) with those that in-
tersect triangle(v0,v2,v3) (represented by the arcsa2, a0). This
induces the removal of a loop inRG, as shown in Figure 3(c-d). The
value ofF at the vertices determines which edge, heree4, directly
connects the highest vertex,v0, to the lowest vertex,v3, and we call
the corresponding pathp1 = a0,a2. The paths corresponding to the
remaining two edges,e0 ande2, are concatenated to form a second
pathp2 = a4,a1. In RG, both paths connect the highest node,n0, to
the lowest node,n3. Mergingp1 with p2 removes the loop fromRG
and creates a single pathp3 = a0,a1,a2, as shown in Figure 3(d).
At all times, this simple sequence of operations maintains the com-
plete Reeb Graph of all simplices seen so far.

At the end, we make a pass throughRG and remove degree-two
nodes by merging their adjacent arcs. This last pass through the
data is not necessary if one of the optimizations below is applicable.
Correctness. The natural way to show correctness of an on-line
algorithm is by induction.

We first assume to have a 2D simplicial complexM with known
Reeb graphRG. The central step of our algorithm is to simply add
a new trianglet to M and updateRG accordingly (as shown in Fig-
ure 4). This operation is performed correctly by adding first the



boundary oft and then merging the arcs ofRG corresponding to
contours ofM that get connected by the interior oft. The result is a
new meshM′ with correct Reeb graphRG’.

Formally, given the Reeb graph of a simplicial complexM with n
triangles we can compute the Reeb graph of the simplicial complex
M + t havingn+1 triangles. Moreover, the Reeb graph for anyM
having 0 triangles is the empty graph. Using this as the base for
the induction, we can compute the Reeb graph of any 2D simpli-
cial complex (no restriction to manifold or other special cases). In
Section 3 we also show how this algorithm can be used for higher
dimensional mesh.
Optimizations. We take advantage of additional information
provided with the input mesh to reduce the storage requirements
of our algorithm and improve performance. To this end, we intro-
duce a new operation REMOVEEDGE(eα ) that follows the path cor-
responding toeα and removes all occurrences ofeα from RG. RE-
MOVEEDGE is used, for example, when the input model is known
to be a two-manifold. In this case, an edge whose two adjacent
triangles have already been processed cannot be involved in any
subsequent updates ofRG. Therefore, its reference can be removed
from the graph as shown in Figure 3(e).

Similarly, it is often possible to determine that all triangles inci-
dent to a vertex have been read in input. With this information
one can remove an edge when both its vertices have been finalized
(even if the mesh is non-manifold). Notice that one can process
meshes in streaming mode even if they are read in the original for-
mat and no preprocessing has been done to reorganize the data [Wu
and Kobbelt 2003]. Moreover recent work [Isenburg et al. 2006]
has shown that finalization information can be guessed when not
available with little performance penalty if the heuristic is wrong.

To further reduce the dynamic storage requirements we keep in
memory only the portions ofM andRG that may be traversed or
modified in the future. Therefore, we remove from memory any
triangle whose edges have become manifold, and any vertex that
has become a manifold (is attached to a circular fan of triangles).
If nodeni has degree two inRG, then we remove it from the graph
and merge its two adjacent arcs into one. In this way, many nodes
of RG can be removed without altering its structure. After several
applications of REMOVEEDGE some arcs ofRG may have empty
edge pointer lists. Such arcs can be removed from memory as well
since they will never be modified again (they correspond to closed
contours that have been completed).
Embedding. While constructing the Reeb graph, we also com-
pute its embedding based on the coordinates of the input vertices.
We store with each arc an ordered sequence of buckets which par-
tition the range of function value spanned by the arc.

Assume that the overall range of the function for a give model is
[0,100] and we want to subdivide it into 200 sections. With an
arc a that spans values from 53.7 to 71.2, we store buckets with
separating values(53.5,54,54.5, . . . ,71.5). Each bucket contains
an integerNV to count the number of vertices accumulated and
a vectorP of the their average coordinates. When an arc is first
created by CREATEARC the first and last buckets contain one vertex
(the endpoints of the edge), while the rest of the buckets contain no
vertices. For a short arc that spans only one bucket and one edge,
its initial value isNV = 2 andP is the average of the two endpoints
of the edge.

The basic algorithm modifies arcs in two ways (see Figure 3(f)):
(i) by a MERGEPATHS operation, and (ii) when removing a node of
degree two. In both cases we concurrently update the corresponding
buckets merging them whenever necessary.

When we merge two buckets(NV1,P1) and(NV2,P2) with the same
range but from two distinct arcs we obtain a bucket(NV,P) with
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v v
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Figure 5: (a) Maximumu is canceled with up-forking saddlev by
first gluing the path (shaded) fromu to v onto the other path starting
at v, and then deleting nodesu andv. (b) Down-forking saddleu is
canceled with up-forking saddlev by gluing two paths and deleting
nodesu andv.

NV = NV1 + NV2 and P = (P1NV1 + P2NV2)/NV (unlessNV1 =
NV2 = 0 in which caseNV = 0,P = (0,0,0)). If two buckets con-
tain some of the same vertices (because their arcs start and/or end at
the same node), we subtract the contribution of such vertices fromP
and the decrement the value ofNV accordingly. This avoids count-
ing vertices multiple times.

In a MERGEPATHS operation two paths with the same endpoints
are merged into one. In this procedure we traverse the two paths
and their buckets from top to bottom and create a unique sequence
of arcs with buckets as in a merge-sort algorithm, see Figure 3(f).

When we remove a degree two noden, it has noden1 adjacent from
above and noden2 adjacent from below. We replace arcs(n1,n)
and (n,n2) with arc (n1,n2). We obtain the sequence of buckets
for (n1,n2) by concatenating those in(n1,n) with those in(n,n2)
except for the two buckets containingn which we merge into one if
they span the same range of function values.

The update operations are more complicated if we cannot estimate
the range of the function before loading the mesh. Still, we want to
estimate the embedding ofRG using betweenk and 2k buckets. In
this case we dynamically maintain the rangeR= fmax− fmin while
loading the mesh. Initially, the range is set to the function range
of the first triangle or set of triangles we load in memory. The size
of a bucket is set to 2h, whereh is the largest signed integer such
that k2h ≥ R. The bucket containing the real valuew has range
[i2h,(i +1)2h], wherei is the largest signed integer such thati2h <
w.

Once we set the current parameterh we update the value ofR each
time we read a new input vertex. WheneverR surpasses 2k2h the
value ofh is incremented untilR is again betweenk2h and 2k2h.
Thus, buckets periodically double in range while their separating
values remain stable. The adjustment of buckets happens only in
an amortized manner, immediately before an arc undergoes either a
merge or a node removal. This strategy avoids repeated traversals
of the graph.
On-line noise removal. Real-world functions are often noisy
and one can expect their Reeb graphs to be noisy as well. Any
practical use of such Reeb graphs requires noise removal. We use
persistence based simplification [Edelsbrunner et al. 2000] to elimi-
nate insignificant extremum-saddle pairs from the Reeb graph while
it is being computed. Thepersistenceof a pair of critical points
is the absolute difference in their function values. As shown in
Figure 5(a), we remove extremum-saddle pairs that are connected
by a sequence of finalized arcs and whose persistence is less than
a user-specified value. In our experience a large portion of most
Reeb graphs consists of noise. Removing features with persistence
less then 0.1% of the function range can shrink a graph by orders
of magnitude without loosing any significant information. The de-
noised Reeb graphs are then subjected to a more extensive analysis
by building a coarse-to-fine hierarchy as described next.
Simplification and Hierarchy. Simplifying the Reeb graph and
storing it in a coarse-to-fine hierarchy is a requirement for any sub-
sequent progressive visualization and/or processing. We simplify
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Figure 6: (a) Boundary of a tetrahedral meshM pseudo-colored
based on the distanceF from the marked vertex. (b) Cut-away
view of the two-skeletonM̂ of M with the restricted functionF̂
as pseudo-color. (c) Several level-sets ofF . (d) One-skeleton of the
level-sets ofF which are also the level-sets ofF̂ .

the Reeb graph using the extended persistence algorithm [Agarwal
et al. 2004] which generalizes the notion of persistence to loops.
In addition to pairing maxima withsplit-saddlesand minima with
merge-saddles(as in regular persistence) their algorithm pairs split-
saddles with merge-saddles which form a loop in the Reeb graph.
This allows us to measure the persistence of loops and rank them
uniformly with the other topological features.

We compute a persistence hierarchy for a Reeb graph in two phases:
First, we compute all possible persistence pairs. Second, we can-
cel pairs of critical points in increasing order of persistence while
maintaining the sequence of simplified Reeb graphs in a partially
persistent data-structure [Driscoll et al. 1989]. This data-structure
requires space proportional to that used by the original Reeb graph
plus the number of updates to the graph, and allows accessing the
Reeb graph simplified to any persistence threshold in time propor-
tional to the size of the output. Figure 5 shows an extremum-saddle
cancellation (a), and a saddle-saddle cancellation (b). Both simpli-
fications glue together the paths from a saddle towards its paired
node and remove both nodes (which now have valence two).

Combined with the de-noising step described above we generate the
persistence hierarchy of all models using moderate resources. For
example, we process the St. Matthew using a maximum of 150MB
of memory. Once computed, we store the hierarchy on file in a
coarse-to-fine order to enable progressive processing. In the file
header, we provide a look-up table of memory usage of the Reeb
graph at each simplification level to guide the user on how fine a
persistence level one can load with fixed memory resources.

3 Higher Dimensional Meshes

The algorithm described above is very general and applies to sim-
plicial meshes of any dimension on the basis of the following theo-
rem:

Theorem. The Reeb graph of a function F, defined on the sim-
plicial complex M, is identical to the Reeb graph of a functionF̂ ,
the restriction of F to the 2-skeleton̂M of M.

Figure 7: Two examples of Reeb graph of tetrahedral meshes often
used in scientific visualization. On the left the fighter model with
70K tetrahedra. On the ritgh the SPX model with 20K tetrahedra.

Proof. By definition, the Reeb graph is obtained by contracting the
connected components of level-sets to points. Consider a compo-
nent of the level-set of functionF defined on ad-dimensional sim-
plicial complexM. This component is itself a(d−1)-dimensional
complex (not necessarily simplicial) made up of(d−1)-cells (de-
rived from d-simplices ofM), whose boundary are(d− 2)-cells
(derived from the(d−1)-simplices ofM), and so on. E.g: In 3D, a
level-set component is a 2-dimensional complex made up of trian-
gles or quads (derived from tetrahedra inM), bounded by edges (de-
rived from triangles inM), and vertices (derived from edges inM).
The connectedness of a level-set component is determined solely by
its 1-skeleton, which is derived from the 2-skeletonM̂ of M. Fig-
ure 6 shows a diagram that depicts how to get to the 1-skeleton of
a level-set component of functionF defined on a tetrahedral mesh.
We can extract a level-set ofF defined onM and then extract its
1-skeleton, or we can restrictF to M̂ and extract the level-set of̂F
defined onM̂. Both paths arrive at the same 1-skeleton of the level-
set component and thus produce the same Reeb graph. This proves
the theorem.

In practice, we process higher dimensional simplicial complexes by
reading each simplex and applying the algorithm directly to its two-
skeleton. Figure 7 shows the Reeb graph for two tetrahedral meshes
commonly used for testing scientific visualization codes. Figure 8
shows the Reeb graphs of the Sierpinski simplex subdivided two
times for dimensions two through five using one of the coordinates
as function. We use thedot graph drawing package to compute the
layout and even though the layout is certainly not optimal one can
distinguish the(d+1) clusters expected in dimensiond.

4 Results and Conclusions
We have tested our algorithm on various models using for each
a range of functions includingx, y, and z coordinates and some
eigenvectors of the Laplacian matrix of the input mesh (such as the
one used for building streaming meshes). Because the choice of
function impacts the running time we have also tested with random
functions that yield very large, possibly impractical Reeb graphs,
but constitute a very good test for performance and robustness. Fig-
ure 10 shows timing results for the worst case with random func-
tions and for the average running time over the other functions. For
comparison we also plot the mesh load times and the ideal linear
scalability line. All tests were performed on a MacBookPro 2.3Ghz
Intel Dual Core processor, with 2GB of main memory.

Our experiments show that, in practice, our new algorithm scales
linearly both in the average and in the worst case where the running
time doubles. At the high end we can compute the Reeb graph of
the St. Matthew model with roughly 372 million triangles in just
over eight minutes on average, see Table 2. Given the theoretical
lower bound ofO(nlogn) for the computation of the Reeb graph on
2-manifolds these results are very encouraging.

Furthermore, we have the option of running in “out-of-core” mode
in which the finalized parts of the data structures are removed on-
the-fly and the results written to disk immediately. The last two
columns of Table 2 and Figure 10(in red) show the memory used
when running out-of-core. We can compute the Reeb graph of the
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Figure 8: Reeb graphs of the Sierpinski simplex of dimension two
to five subdivided twice. We use one of the coordinates as function
value, shown here in grayscale.

Model name
number of RG compute time Load Mem. usage

triangles max avg time min max
cow 5.8Kt 0.01s 0.01s 0.01s 23KB 33KB
feline4k 8.3Kt 0.02s 0.01s 0.02s 66KB 94KB
indian goddess 19Kt 0.13s 0.10s 0.28s 47KB 47KB
turtle 38Kt 0.08s 0.06s 0.07s 4.1MB 4.1MB
heptoroid 40Kt 0.08s 0.06s 0.08s 1.5MB 1.5MB
dancer 50Kt 0.24s 0.11s 0.10s 1.5MB 1.8MB
elephant 50Kt 0.10s 0.05s 0.05s 0.1MB 0.1MB
ganesh 413Kt 1.1s 0.85s 0.8s 0.2MB 0.3MB
dragon 871Kt 1.8s 1.0s 0.8s 0.1MB 0.1MB
goddess2 1.0Mt 3.1s 2.3s 1.9s 0.3MB 0.3MB
happy-buddha 1.1Mt 2.8s 1.4s 5.2s 0.3MB 0.3MB
gargoyle 1.7Mt 4.2s 3.2s 3.5s 1.0MB 1.0MB
malay. goddess 3.6Mt 14s 9.5s 7.0s 0.5MB 0.7MB
asian-dragon 7.2Mt 23s 8.7s 7.4s 0.5MB 0.5MB
thai-statue 10Mt 34s 13s 23s 1.0MB 1.0MB
Lucy 28Mt 101s 48s 47s 2.1MB 2.1MB
David 56Mt 218s 108s 94s 2.1MB 2.1MB
StMatthew 371Mt 1448s 486s 311s 8.4MB 8.4MB

Table 2: Performance results for a variety of models. Running times
for in-core and memory usage for out-of-core computation.

St. Matthew model using between 8.3MB of main memory in the
best case and 376MB in the worst case. This makes Reeb graph
computations for even the largest available models feasible on com-
modity hardware. Surprisingly, due to the streaming nature of the
algorithm the out-of-core computation has nearly no impact on the
overall run-time. For example, the David computes in 218 seconds
in-core versus 220 seconds out-of-core and Lucy in 102 seconds in-
core versus 105 seconds out-of core. Coupled with the on-line noise
removal described in Section 2 we process the St. Matthew model
(using a reasonable function) from original surface to progressively
stored Reeb graph using never more than 150MB of memory.

To study the dependency of the performance of our algorithm on the
layout of the input data we report in Table 3 the Reeb graph com-
putation time and memory usage for the meshes in their original
(.PLY) order after adding vertex finalization. Table 3 also reports
the preprocessing time to compute this finalization. We observe
that in most cases the running times and memory usage increase

Model
Performance of RG computation for different functions

f = x f = y f = z f = random conv.
time / mem time / mem time / mem time / mem time

cow 0.1s / 33KB 0.1s / 23KB 0.1s / 33KB 0.1s / 33KB 0.1s
feline4k 0.1s / 66KB 0.1s / 66KB 0.1s / 66KB 0.1s / 94KB 0.1s
indian goddess 0.1s / 47KB 0.1s / 47KB 0.1s / 47KB 0.1s / 47KB 0.3s
turtle 0.2s / 4.1MB 0.2s / 4.1MB 0.2s / 4.1MB 0.2s / 4.1MB 0.4s
heptoroid 0.2s / 1.5MB 0.2s / 1.5MB 0.2s / 1.5MB 0.2s / 1.5MB 0.4s
dancer 0.2s / 1.5MB 0.2s / 1.8MB 0.2s / 1.8MB 0.2s / 1.8MB 0.3s
elephant 0.2s / 0.1MB 0.2s / 0.1MB 0.2s / 0.1MB 0.2s / 0.2MB 0.4s
ganesh 1.1s / 0.4MB 1.1s / 0.4MB 1.3s / 0.3MB 1.1s / 0.4MB 1.9s
dragon 2.2s / 1.0MB 2.2s / 1.0MB 2.3s / 1.0MB 2.2s / 1.0MB 4.5s
goddess2 3.8s / 0.4MB 3.7s / 0.4MB 4.2s / 0.4MB 3.8s / 0.4MB 3.6s
happy buddha 2.7s / 1.0MB 2.7s / 1.5MB 2.9s / 1.0MB 2.7s / 1.0MB 5.6s
gargoyle 4.6s / 1.0MB 4.3s / 1.0MB 4.4s / 1.0MB 4.3s / 1.0MB 5.6s
malay. goddess 9.8s / 0.7MB 9.7s / 0.7MB 11s / 0.5MB 9.9s / 0.7MB 9.6s
asian dragon 16s / 16MB 16s / 16MB 16s / 16MB 16s / 16MB 28s
thai-statue 31s / 16MB 30s / 16MB 31s / 16MB 30s / 16MB 40s
Lucy 1.8m / 94MB 1.8m / 94MB 1.8m / 94MB 1.7m / 94MB 72s
David 2.1m / 8.3MB 2.2m / 8.3MB 14m / 528MB 2.1m / 8.3MB 2.6m
StMatthew 15m / 8.3MB 3.8h / 376MB 16m / 16MB 15m / 8.3MB 25m

Table 3: Performance of the Reeb graph computation for models
stored in the original triangle order. For each model we report com-
putation time and memory usage for four functions. We report also
the preprocessing time to add the finalization information to the file.

but remain comparable to those obtained for the optimal stream-
ing meshes re-arranged in spectral order [Isenburg and Lindstrom
2005]. This is due to the fact that most meshes are in fact created
with some degree of coherency and our algorithm is able to exploit
such coherency when present.

Notice, that computing the finalization information is not an ex-
pensive operation. Given a mesh without finalization we perform
a preliminary pass counting the number of triangles that use each
vertex. During the second read the vertices are finalized when all
their triangle references have been counted. Naturally, this oper-
ation is independent of the input function and it is usually better
to add finalization information to the file to avoid re-computation.
For completeness we report in Table 3 the finalization times for
each mesh in the original triangle order. Notice that the finalization
time is often dominated by the file I/O given the massive sizes of
the original ply files and uncompressed output obj file. For exam-
ple the StMatthew model has a 7.3GB input and 16GB output, the
David model has a 1.0GB input and 2.3GB output, and the Lucy
model has a 0.5GB input and 1.0GB output. Still, we are now able
to process all these models on a commodity laptop computer.

Application. To demonstrate one application of our algorithm
we use Reeb graphs to find and highlight small defects in geomet-
ric models. In particular, we can detect small manifold handles and
tunnels and are not restricted to just finding non-manifold or miss-
ing triangles. The former defects are global in nature and therefore
much harder to detect than the latter which can be found by check-
ing a local neighborhood.

For each model we plot the number of loops above a certain persis-
tence (as a percentage of function range) creating one-dimensional
graphs, see Figure 9. These plots indicate both the topological com-
plexity of a model as well as a threshold separating noise from
features. Figure 9 shows three different examples: The plot for
the Botijo on the left shows one very small and five larger fea-
tures. A closer inspection reveals that, although completely man-
ifold, the model contains some folded triangles creating a hidden
tunnel. This flaw is not visible in standard rendering yet will ad-
versely impact most geometric processing, e.g. simplification or
parametrization. The plot for the Malaysian Goddess in the middle
of Figure 9 shows a large flat region that separates the topological
noise from the two desired tunnels. The close-ups above the plot



0.1 1 10 100

persistence

1

5

6

n
u
m

b
er

 o
f 

lo
o
p
s

Botijo

0.001 0.01 0.1 1 10 100

persistence

1

2

10

15

n
u

m
b

er
 o

f 
lo

o
p

s

Malaysian

0.001 0.01 0.1 1 10 100

persistence

1

10

100

1000

10000

26114

n
u

m
b

er
 o

f 
lo

o
p

s

St-Matthew

Figure 9: Finding small defects in surfaces:(Bottom) Plots of the number of loops in the Reeb graph above a given persistence for the Botijo,
Malaysian Goddess, and St. Matthew model. The persistence is a percentage of the range of the function used to compute the Reeb graph.
Both axis use a logarithmic scale and span several orders of magnitude. (Top) Close-up views of the neighborhood around small topological
defects detected using the Reeb graph.

highlight the neighborhood around one small loop revealing a very
thin handle, likely an artifact of the surface reconstruction process.
The plot for St. Matthew on the right of Figure 9 shows no flat re-
gion and its largest loop has a comparatively low persistence. This
is expected as the model ideally has genus zero and all tunnels and
handles are in fact noise. The close-up view shows a small tunnel
at the back of the statue.

Conclusions. In conclusion, we have presented a novel algorithm
to compute, simplify, and hierarchically re-organize Reeb graphs of
very large data sets without restrictions on dimension or complex-
ity of the input. This represents a significant improvement over of
the state-of-the-art relevant to a broad range of applications. In par-
ticular, when combined with the embedding discussed above, our
algorithm immediately increases the range of applicability of most
algorithms mentioned in Section 1 by several orders of magnitude.
Despite its broad impact, our algorithm is easy to implement, ro-
bust, and can be run on commodity hardware.
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