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• Ensembles, Complexity, Temporal

– new data-comparative that apply to ensembles.

– Large-scale comparative methods for time-varying 
data.

• Ensembles, Complexity, Temporal

– new data-comparative that apply to ensembles.

– Large-scale comparative methods for time-varying 
data.



Comparative Visualization of Time-varying Data.

Rayleigh-Taylor Instability



Comparative Techniques and Ensembles

Studying 25 Rayleigh-Taylor Instability calculations (all at 10us)
Two “knobs”: turbulent viscosity coefficient, buoyancy coefficient

Five values for each knob, 25 pairs total

Average Speed
over all 25

Max Speed
over all 25

Min Speed
over all 25

Biggest 
difference
over all 25
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Topology

• Spatial, Complexity• Spatial, Complexity
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