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Abstract.

With petascale applications comes petascale data; gleaning knowledgesaid from this large-
scale data is widely accepted to be a limiting factor in many fields of scientifieaaod Large-scale data
presents two incredible challenges: scale and complexity. The scalengelefers to the problem of
being able to process tremendous numbers of bytes of data within somedirsigaint. The complexity
challenge is more subtle; petascale data is inherently complex and redubisirata to comprehensible
forms is difficult.

For the scale challenge, it is often assumed that continued usage ofjteehriable at the terascale
will provide a recipe for success at the petascale. We argue the oppfadiiveving this path will result
in cost prohibitive solutions. Instead, we must pursue “smarter” igales, such as in situ and multi-
resolution processing, which are well established by a decade’s wiaeBearch.

The forms of postprocessing are very diverse, but they can benadzed in broad use cases: data
exploration, presentation graphics, quantitative analysis, compamatialysis, and visual debugging.
Together, these use cases are responsive to the complexity challdfmeover, these use cases are
responsive to the demands of the user community. Making pretty pidsijast one component of the
simulation community’s postprocessing needs and all of these needbenaddressed for petascale data.

A major focus of this paper is to construct a road map for realizing thiadset of use cases at the
petascale, and, further, to do this in the most economical way possitdae bf the smart processing
techniques we consider are a panacea; none are capable of suppuetin use case. However, a software
architecture that underpins these processing techniques and thatnzanidally select between them will
provide an economical way to meet these challenging requirements) #md paper we discuss such an
architecture.

1. Introduction

As noted in the abstract, gleaning knowledge and insiglm flarge-scale data is widely accepted to be a limiting
factor in many fields of scientific endeavor. The computati@tience community is approaching petascale level
simulations, which will produce extremely large data sBtsstprocessing this data is both critical and challenging.
Continuing with the current techniques for productionasemale postprocessing will result in prohibitive hardware
costs. Instead, we propose a change in strategy: a systamigttsoftware architecture) that employs varied
technigues based on situation. This system, in turn, wiloém petascale postprocessing in a production setting
and in many diverse forms, all with substantially reducedihvare costs.

In Section 2, we describe “pure parallelism”, the technigammonly used for production visualization and
analysis at the terascale. We also describe why this tegbnig|l likely be cost prohibitive at the petascale. In
Section 3, we survey the “smart” alternatives to pure peliaih and discuss their relative costs. In Section 4,
we argue that many use cases that go beyond traditionallizistian should be considered for two reasons. One,
these use cases are responsive to the mandate of the useunitynand they will enable users to reduce the
incredible complexity of petascale data. Two, the incrdasest of entry for petascale postprocessing will result in



economies from considering these use cases simultanebauSigction 5, we survey the use cases themselves: data
exploration, quantitative analysis, presentation greghiisual debugging, and comparative analysis. In Seétion
we discuss the viability of our smart processing technidaesach of the use cases, and argue that a combination
of techniques is needed to provide the most cost effectiligisn. Finally, in Section 7, we describe a system
where algorithms can be implemented independently of gsiog technique (such as pure parallelism or its smart
alternatives), and, further, where the system can addyptwatch between these techniques on an as-needed basis.

2. The problem with pure parallelism

“Pure parallelism” refers to the technique where many @Beoes are used to read the entire data set into primary
memory. This is the simplest technique to implement; the daistored in its natural form and every byte of
data is available on demand. At the terascale, productisualization tools, such as Vislt[4], EnSight[5], and
ParaView[9], successfully used this technique for the @ssog of data. They partitioned the data and had each
processor operate on its respective subset, with the tommply distinguished by the level of communication
permitted amongst its processors during execution.

The hardware to enable this processing takes one of two folfvith one form, there is a dedicated mini-
supercomputer for postprocessing tasks. In this case, dteeid either transferred to a private disk for the
machine, or the data is directly accessible from the supepcter through a shared disk. With the other form,
the supercomputer itself is used to visualize and analyeedhults after the simulation has completed, either
through dedicated postprocessing nodes or by using the Isattie nodes used to run the simulation.

The problem with continuing on the pure parallelism pathhiat tthe hardware costs will be prohibitive.
Currently, the massive amounts of data produced by Lawrkiveemore’s 360 TeraFLOP BlueGene/L machine
are processed by a separate, dedicated machine, Gauss.i&a®l 2 processor Linux cluster which itself made
the Top500 and cost nearly two million dollars. When planriorga similar setup with a five PetaFLOP machine,
the estimate for a separate, dedicated postprocessintgrowss aboufifteen million dollars Although this cost
maybe justifiable in the context of a larger supercomputer pasehit is probably not justifiable given that software
alternatives can substantially reduce these hardwaréresgents.

The notion of co-opting a portion of the supercomputer to wkeractive postprocessing is also not very
palatable. Postprocessing is typically done interagtjwebkulting in an uneven and “bursty” usage of the computer.
The computer utilization oscillates between zero and onaliad percent usage. During a “non-burst,” is this
portion of the supercomputer to sit idle, waiting to respdihglthat cost justifiable?

Another problem with co-opting the supercomputer is thedreaward multi-core processing. Postprocessing
requires a different architectural balance of computirgpueces than simulation; it is typically a memory- and
I/O-limited activity and is rarely compute-limited. As pstale platforms tend towards increasing compute power,
with memory and I/O not keeping pace, the net increase inemel capability delivered for postprocessing is not
proportionate. Hence, postprocessors will need greaseurees to handle the considerably larger data sets, and
will need an increasing proportion of the supercomputemtisijob.

To summarize, planning on using pure parallelism at thegata entails either making an expensive computer
purchase or co-opting a significant portion of the superagsrpdiminishing its effectiveness.

3. Large Data Processing Techniques
In this section, we survey the techniques for large datagssing that have already been investigated and/or
developed by the research community. As we will see in latetiens, many of these techniques perform well
with certain postprocessing use cases, but not others.

For each section, we start by describing the technique, tlescribe its advantages, disadvantages, and
challenges. Disadvantages are problems inherent wittethamigue; challenges are things the technique currently
does not do well, but could be improved.

3.1. In situ processing

3.1.1. DescriptionIn situ processing consists of processing the data usingebeurces allocated for the
simulation code. In this model, the simulation code advariogime for a while, then hands off a baton to a
postprocessing algorithm, which generates results andsiizie baton back

1 Note that this model blurs the line of the term “postprocessing”, since sisafydone while the simulation code is running,
rather than after it has finished. Regardless, we continue to use theltecause the analysis is still performed after the
simulation code has calculated a result, even though the period of time aftisrig only fractional seconds.



3.1.2. Advantages This techniques sidesteps 1/0 costs and will always havewrft compute resources.

3.1.3. DisadvantagesIn situ processing requires that the user knows exactly ahallysis should be done as the
simulation is running, which is often not the case. Also, samalysis is inherently time consuming, like with
exploratory visualization. As in situ processing also giies the entire supercomputer while it is running, this use
of resources can be very expensive. Further, there is ame etdiss of operations that look at an event and want to
tracebackwards in timénow that event came to be. This is not possible with in sitcgssing. Finally, there is a
tendency to refrain from 1/O altogether when in situ progesss employed. If this is the case, the only recourse
for performing new analysis is to run the simulation again.

3.1.4. Challenges Visualization and analysis software is typically develdpework with many simulation codes,
and there is an economy in this re-use among the codes. Hgwevén situ processing, developing a single
solution that will be effective for many simulation codesiimajor challenge. Postprocessing algorithms often fix
the way they represent different mesh types and fields orethmeshes. For example, a postprocessing algorithm
may assume the fields are in “row-major order.” But each satarh code has its own in-core representation. One
code may have “row-major order”, but another may have “caoltmajor order.” In this case, the postprocessing
algorithm can directly operate on the data of the “row-majater” simulation, but, in the “column-major order”
case, the algorithm must convert the simulation data to “meayor.” This conversion step leads to memory bloat,
which is a significant problem. Although, high end supercaotaps have lots of memory, this resource is still often
the limiting factor for the resolution of simulations; todging this conversion step will only worsen the dearth.
(It should be emphasized that the row-major / column-majan®le is just one omany, manyossible pitfalls.
Experience shows that the odds of a fixed data model of a pagtgsing tool matching that of a simulation code
are very low, unless the postprocessing tool was built atdbe simulation code.)

The challenge, then, is to implement algorithms in a way ihatdifferent to the simulation code’s in-core
layout, and, of course, still maintain high efficiency. Omgpm@ach is to leave the in-core layout as is and use
abstract interfaces (e.g. virtual functions) to hide thiadayout from the postprocessing algorithms. Depending
on the extent that virtual functions are used, this may bejaately efficient. However, the SCIRun library[8]
demonstrated an even more successful approach to thigprpby using a templated data model. This templated
approach allows for high efficiency, in addition to solviing tdata layout issue.

Finally, performing in situ processing on petascale cormpxvould force common postprocessing algorithms
to be run on an unprecedented numbers of processors. Th extehich these algorithms will be efficient at this
scale is an open question.

3.2. Multi-resolution techniques

3.2.1. Description With multi-resolution techniques, the data set can be erpldy starting with a coarse
representation and then focusing in on portions of the dettéossee finer representations. Finer representations
may come automatically after coarse representations faaiktulating, or they may be explicitly requested by the
analyst. Ultimately, enough replacements with finer and fiapresentations will return the original data (at least
desirably).

3.2.2. Advantages These techniques have been greatly studied by the researchunity (for example, [10] and
[12]), so their viability is well established. For use casdgre a coarse representation (potentially augmented by
some fine representations) will suffice, this technique iméndous win, since it substantially reduces 1/0O and
processing costs.

3.2.3. DisadvantagesFor other use cases, offering results on a coarse data set lsaaningful, because too
much detail is lost. Further, the multi-resolution repregaton introduces costs, both to compute and to store.
Given that most simulations output at a low rate (to save ow $10), however, these costs may be insignificant.
3.2.4. Challenges When a coarse version of the data set is displayed, it is irapbid understand the accuracy of
the results. Some multi-resolution technigues emphagidenance through elegant indexing, but de-emphasize
control over what data is displayed at coarse resolutiodsleremphasize understanding of the inaccuracy of the
intermediate results.

Finally, some multi-resolution techniques lose their kiemlge of the original data set. Some use cases require
that results be returned in a format familiar to users. FangXe, a query that returns an element identifier for
a block-structured simulation would want that identifierirolude information like which block the element is
contained in, as well as its logical |, J, and K indices. Thalleimge is to apply a multi-resolution hierarchy to this
data with minimal overhead, and still be able to produce sofdimation.



3.3. Out-of-core

3.3.1. Description “Out-of-core” techniques[15] consist of partitioning tliata set into subsets, and then
processing each subset one at a time. Each subset must Heesmagh to fit into primary memory. After
processing each subset, it is discarded, in all or in pafbreenoving on to the next one.

3.3.2. AdvantagesThis technique does not require parallel hardware. By reduthe memory needs and
operating on subsets, it can process any amount of data withge desktop machine.

3.3.3. DisadvantagesOut-of-core techniques often are not able to meet intesiictiequirements. 1/O is often
the bottleneck for postprocessing, even when doing pamlbeessing, and serial out-of-core will only encounter
this problem all the more so. Of course, out-of-core can Ivellgdized, but we do not consider this variant in this
paper, as the purpose would be to increase interactivittt@mdumber of processors to achieve this interactivity
would approach that of pure parallelism. Another approaciddress I/O issues would be to augment out-of-core
techniques to read less data, for example only reading tiipf the data set that intersects a slice or lies on a
contour (see [3]), but these approaches are not widelycaipé to the diverse use cases we are considering.
3.3.4. Challenges Some algorithms require repeated access to data. Thesghatyoare, at a minimum, difficult

in this setting, because data must be fetched from disk pheittimes. However, clever implementations of these
algorithms may be able to minimize re-reads, or even elitritize re-reads altogether in some cases.

3.4. Pure parallelism

3.4.1. Description “Pure parallelism” uses many processors to read the erdtgestt into primary memory. The
data is stored in its natural form and every byte of data idae on demand. We argued in Section 2 that regular
use of this technique will be cost prohibitive. Despite thessts, pure parallelism will likely have a role in the
petascale future, primarily as a backup. The question ishiat wxtent.

3.4.2. Advantages This processing paradigm is suitable for all use cases wsiden

3.4.3. Disadvantages The hardware costs for pure parallelism have the potemwtia¢tiarge.

3.4.4. Challenges I/O represented the significant bottleneck at the teraseale this problem will only worsen

in the petascale regime, since processing power is advaneirch more quickly than 1/O rates. Further, many
of the future petascale supercomputers being considenesllightweight operating systems that create barriers
for deploying tools, for example precluding sockets, stiditeraries, virtual memory, and/or threads. (This issue
also exists for in situ processing.) Both of these issued migddressed for a pure parallelism approach to be
successful.

3.5. Cost comparison of techniques
Calculating exact costs for these techniques is difficul aighly dependent on the problem being solved.
However, the differences in cost between the techniquelsigye enough that they can be assessed in gross terms.
The two axes of comparison to consider arachine cost¢the cost of using the necessary hardware to perform
the processing) andintime costgthe time a user must wait to do the required analysis):

e For pure parallelism,

e the machines costs consist of procuring and maintainingsgppacessing-oriented supercomputer or of
dedicating a portion of the supercomputer for these pugose

e the runtime costs are dependent on the amount of paratleliz® and processing capabilities. Given
adequate resources, this can be very fast.

e For in situ processing,

e the machine costs are the overhead to have the supercongmutbe postprocessing work amat be
advancing in the simulation. However, the costs are subiatiynreduced because the data is already
loaded in main memory, saving on very expensive /O costs.

e the runtime costs are very low, since the adequate resoareggiaranteed and I/O is less of a concern.
e For multi-resolution techniques,

e the machine costs come from the overhead of outputting fmegtlution information (see Section 3.2.3).
The rest of the processing is then done with a desktop compugesmall cluster.

e the runtime cost is very cheap (provided that multi-resoiuis a general match to the use case).
e For out-of-core techniques,
e the machine costs are negligible.



¢ the runtime costs are often prohibitive (see Section 3.3.3)

It is difficult to combine our non-quantitative runtime andchine costs into a “total” cost. That said, in
situ and multi-resolution techniques appear to be the mablesfor use with petascale data, as out-of-core often
has prohibitively high runtime costs and pure parallelisayrimcur prohibitively high machine costs. Table 1
summarizes the preceding paragraphs. For runtime costs;resolution techniques were listed as cheaper than
pure parallelism because they often can avoid severe 1/8.dbsould be reasonably argued that these two should
be reversed.

Technique Machine Cost| Runtime Cost| Total Cost
(lowest is best) (lowest is best) (lowest is best)
Pure Parallelism 4 3 2 (tie)
In Situ 3 1 1 (tie)
Multiresolution 2 2 1 (tie)
Out-of-core 1 4 2 (tie)

Table 1. The costs of the processing techniques.

4, The Argument for Diverse Use Cases

A principal assumption of this paper is that it is advantageim both developers and users to consider a diverse
set of use cases. In this section, we provide two argumestgiport of this assumption. One, the user community

relies on diverse use cases that go beyond classic sciengifialization and expect that these approaches will be

available at the petascale. Further, petascale data iseiniiyecomplex and a diverse suite of techniques are needed
to reach crucial insights. Two, an economy is achieved whemliverse use cases are addressed simultaneously.

4.1. Beyond Meat Grinders

“Meat grinder” is a term that describes tools that focuslgaa handling the scale of data without considering the
associated complexity. The analogy is that these toolslgioffange the form of the data (from meshes to images),
cranking data through without bothering to make it easiéntierpret. Complex isosurfaces often go beyond what
our human brain’s visual processing system can meaniygfalierstand. Following the analogy, then, we should
spend more time “finding the right meat.” We need to complanechniques such as isosurfacing, slicing, and
volume rendering with techniques that more directly allowalgsts to do the science they need to do. This often
comes in diverse forms, such as:

e (uantitative measures, like calculating a probabilitysigrfunction,

e comparative techniques, like studying why a high resotusionulation doesn’t match smaller predecessors,

o the ability to dig down and study the behavior of just a hahdfwdata points.
To truly understand petascale data, addressing the scalecessary, but not sufficient. Focusing exclusively
on data exploration will deny analysts what they need: arde/suite of techniques capable of enabling crucial
insights.

4.2. Economies Achieved by Considering Diverse Use Cases

To what extent should there be a common infrastructure flivateng these diverse use cases? At one extreme,
does it make sense to target a single tool/library that cagpi@neach of the postprocessing techniques from Section
3 for our target use cases? Or are there distinctions thag malktiple tools/libraries useful and/or necessary? We
believe the answer is that combining the solutions for tipestprocessing areas into a single solution is beneficial
from a cost perspective. We will make this argument in thie¥ahg sections, from both a development and a user
perspective.

4.2.1. Development Economied he techniques described in Section 3 all have higher soéte@sts to implement
than that of pure parallelism. Thus, the cost of entry fortpasessing will rise for the petascale regime.
Further, many distinct use cases can be solved with the samiendar solutions. Hence, from a development
perspective, there are economies that make a single twal§i (or small set of tools/libraries) desirable. The
biggest example is that a large data infrastructure can belafged once and reused in all of these areas (the
nature of this infrastructure will be discussed in Sectipnlid addition, file format readers, algorithms, and data



models all benefit from this reuse. Also, many previous gastin this space (for example, AVS[16], VTK[13],
and OpenDX[1]) have shown that a flexible, extensible agchitre is advantageous. This underlying architecture
would also be reusable. The advantage, then, of a singléilboaty is that all of these assets can be developed
a single time and reused. Finally, the system we proposedtidde7 will allow algorithms to be implemented

in a way that is indifferent to processing technique. So @liger can implement an algorithm one time, and
achieve a great economy; the algorithm would then be depleyaith pure parallelism, out-of-core, in situ, and
multi-resolution processirtg

4.2.2. User EconomiesFrom a user perspective, there are economies to having ke $ow (hot library) that

can accommodate all of these use cases. First, visualizatio analysis tools tend to have complex features, and
hence complex interfaces. Learning one interface, as @gtosfive or more, is often preferred by users. Further,
users tend to jump back and forth between use cases. For Eamgession focusing on comparative analysis
often leads to some key discovery that then leads to visualgigng on one of the simulations. From within a
single tool, they can do this seamlessly. With multiple $othere is overhead.

4.2.3. Realities of General Solution§ he argument from the preceding sections is that, espgdémlpetascale
postprocessing, there is an advantage to having a systdtwdse infrastructure) where assets can be re-used,
and, for users, there is an advantage to having a singl€anteto perform all of their use cases. This should
be tempered by experience, however. In the world of visatibn tools, there is no “one size fits all” solution.
Some scientific domains are so specialized that thereleshignefit from leveraging a generalized postprocessing
infrastructure. Conversely, making a postprocessin@stfucture that is so general that it can support all séienti
domains can substantially increase development time ahotegperformance.

5. Postprocessing Use Cases

In Section 4, we motivated the power of a diverse set of usescabhey are what customers demand, they allow
for better understanding of complex data, and we can achietredeveloper and user economies by considering
these use cases simultaneously. In this section, we expémie of the use cases: data exploration, quantitative
analysis, comparative analysis, visual debugging, ansiepitation graphics. For each use case we will present a
description, discuss requirements placed on processamgitgues, and, for some of the use cases, discuss new
challenges created by large scale data.

5.1. Data Exploration

5.1.1. Description Data exploration includes the standard scientific visa#ilin techniques, for example slicing,
contouring, and volume rendering. These techniques entuipgophisticated visual processing system to quickly
identify trends and anomalies in data.

5.1.2. Requirements for Processing Techniqu@éth respect to processing, we need to keep the “bursty” mode
of data exploration in mind. It is expected that data expiorais interactive. Further, it must be understood
that data exploration has periods of interactivity, whesutes are considered, and that idle time must be weighed
against the resources used to produce results.

5.1.3. Large Data ChallengesThere are only so many pixels on a computer screen (and ontyasy rods in
your eyes). Petascale simulations have so much data thgt many data points will be encoded in a single pixel.
Will this prevent analysts from locating anomalies, suclheatsspots? We need to ask to what extent classic data
exploration techniques must be adapted to guarantee trattis/presented to an analyst accurately reflects the
simulation.

5.2. Quantitative Analysis
5.2.1. Description “Quantitative analysis” is a broad term and it is useful toliof three areas:
e Basic techniques that span scientific domains

e Advanced techniques that span scientific domains

e Techniques that are tailored to a specific physics area.

The motivation for artificially distinguishing between mand advanced techniques is that some people hear
the phrase “quantitative analysis” and thinkasfly basic operations such as integrating density over a volome t
get a mass, calculating a surface area, or calculating aThese operations are often among the most useful, but,
to many others, this represents only the beginning. Exasrgiladvanced techniques are calculating characteristic
functions, such as chord length distributions[11]. Teghes tailored to specific physics areas vary highly, but a

2 Some algorithms place constraints on the types of processing they alloissthéswill be discussed further in Section 7.



good example is that of “virtual diagnostics,” which alloar simulations to be compared to actual experiments,
through comparison to real diagnostics.

5.2.2. Requirements for Processing TechniquBschniques tailored to a specific physics area create thé mos
new requirements. These techniques must often be perfaairtbe full resolution of the data, not on simplified
versions. Further, some of these techniques may requicegarating outside knowledge, such as equation of
state information. Finally, many of these techniques negdéevelopment from personnel that have, for example,
a background in physics. So the development environment rageire that people with a different set of skills
(i.e. non-visualization personnel) be able to effectivielieract with the environment provided to them. This
environment may have many instantiations. One example isppsd down programming environment, where
personnel with domain expertise can implement algorithmghé C programming language on arrays of data.
Another example could be a scripting environment where ggpse a language, like Python.

5.2.3. Large Data ChallengesEven at the terascale, physics-based analysis was ofteasseéd by serial tools
written directly by simulation code developers and thestomers. Anecdotally, these serial tools will run for a
month to get an answer. A similar approach at the petascsdejrdng a one thousand fold increase in data size,
would lead to a runtime of one thousand months — over eightysyeWhere one month may be an acceptable
turnaround time, eighty years definitely will not be. We dode that the standard operating procedure at the
terascale will lead to poor results at the petascale. Ofsguhese serial, specialized analysis tools could be
parallelized. But, again, petascale has raised the costtof. eThe point, of course, is that petascale simulations
are creating a need for a customizable petascale analysisement.

5.3. Comparative Analysis

5.3.1. Description Comparative analysis is also a broad term. Shen et al.[1#hel¢hree basic areas of
comparative visualization: image-based comparison;léat comparison, and topological comparisons. Image-
based methods compare images that result from visualizatgorithms. Most image-based comparisons[6, 17]
perform image differencing algorithms on images from nplétinputs. These systems are limited to comparing
visualizations where the entire data set can be represénptedsingle image. However, these techniques are
extremely important in the context of comparison to expenital results. Data-level comparisons [14] place fields
from one mesh onto another mesh and use derived quantitesatoine differences between the two data sets.
Topology-based (or feature-based) techniques compateréseaof the data sets [2, 7]. Typically, they survey the
data set, create summaries of the data, and develop methoidsialize and compare these summaries.

5.3.2. Requirements for Processing Techniqu@ésmparative analysis requires processing multiple dats se
simultaneously, for example multiple time slices of a singjinulation or multiple simulations from an ensemble.
Finally, these techniques must also often be performecedtthresolution of the data, not on simplified versions.

5.4. Visual Debugging

5.4.1. Description For simulation code developers, visual debugging is oftenrtumber one use case for a
postprocessing tool: it is the primary means for finding bnghe simulation code. Examples of these techniques
include locating a hot spot, finding an area of mesh tangbn{picking” on an element and getting a report about
it, such as the value of the element, the value of its neighteic.

From the perspective of data processing, there are two mkgseses of visual debugging: aggregate queries
and individual queries. An example of an individual querg isode developer noticing a hot spot and wanting to
obtain more information about it. An example of an aggreggiery is a code developer wanting to survey the
entire data set and obtain a list of elements that meet sateear The difference between these two classes is the
resources necessary to satisfy these queries.

5.4.2. Requirements for Processing Techniqu¥isual debugging requires information about the simulatio
be produced in a manner that respects the original layotmeo$itulation. For example, any query that returns an
element identifier must return the information in a way thakes sense to the simulation code developer.

5.5. Presentation Graphics

5.5.1. Description Presentation graphics is one of the most time consumingitéesi for visualization experts.
This term includes moviemaking and making images for viepbrpresentations, publications, etc. Again, we
distinguish between two classes of presentation grapHissesentation-oriented graphics” and “exploration-
oriented movies.” “Presentation-oriented graphics” gmcally high quality. Their purpose is to inform a large
audience. “Exploration-oriented movies” are typicallynédoy analysts for themselves. They make simple movies
so they can observe, and hopefully ultimately understandnpmena in the simulation. In many ways, this use
case is very similar to data exploration, with the key défares being that the explorations are saved in a permanent



record (for example, an MPEG) and that various forms of aat@n of algorithms (e.g. animating a slice, an
isovalue, or over time) are required. Presentation-ce@graphics also augment the images with annotations like
time sliders, logos, and text.

5.5.2. Requirements for Processing Techniquedth presentation-oriented graphics, itis assumed tleaitttages
represent the entire data set, as the images (even if thésaares of a movie) are often studied in great detail and
there is often a desire to “show off” the full resolution oéttata. This requirement is relaxed with exploration-
oriented moviemaking; the movies often don’t require tHerasolution of the data.

6. Viability of Techniquesfor Use Cases

Having surveyed the processing techniques (Section 3)l@ndge cases (Section 5), we can see that not all of
the smart processing techniques will be applicable to tieecases. The mode of failure always follows the same
formula: processing technique “ABC” does not have prop8di”, which is required by use case “XYZ". In
Section 6.1, we will enumerate the failure modes. This i®fedd by a summary of the viability of techniques for
the use cases, in Section 6.2, which provides a road mapdqetascale postprocessing of our uses cases.

6.1. Failure modes
For each of the following properties (the “IJK”s), the prayds required by a use case, but is not supported by a
processing technique. The properties are:

e Processing the data must take place in its full and native for

e Multiple data sets must be supported simultaneously
e Processing must occur interactively

o Idle time between processing requests will occur
6.1.1. Processing the data in its full and native forfalulti-resolution techniques do not process the data in its
full and native forni. But this representation is a requirement for all areas aftjtative analysis and comparative
analysis, aggregate queries for visual debugging, an@ptaon-oriented graphics. Therefore none of those use
cases can be fully solved with multi-resolution techniques

It should be noted that multi-resolution may still have wahdded in the areas of comparative analysis and
guantitative analysis. Here, the initial, “rough” answirsn coarse data can guide more in depth queries in the
data set. At some point, both comparative analysis and gative: analysis almost always dictate results at the
true resolution of the data. (Note that the system desciitb&ection 7 will allow for these results to be taken on
a coarse representation, putting the decision in the hafrttie aser.)

6.1.2. Supporting multiple data sets simultaneousty situ processing will only work with the simulation’s
current data set. So it is not able to support multiple data sienultaneously. Further, comparative analysis
requires processing multiple data sets (e.g. multiple stizees from one simulation, multiple simulations, etc.).
It should be noted, however, that clever configurations @owercome these limitations, for example having a
client connecting to two in situ-based servers simultasoGenerally speaking, however, in situ processing and
comparative analysis are not compatible.

Some advanced and physics-based quantitative analys$igigees have a time component, which can be
difficult (going forward in time) or impossible (going backwds). So in situ processing should be considered
on a case-by-case basis for these areas.

6.1.3. Interactivity Out-of-core processing is not able to provide interagtifiiee Section 3.3.3). Further, data

exploration and aggregate queries from visual debuggiqgire interactivity. So out-of-core is not appropriate

for these use cases. It should be noted, however, that chdiviqueries from visual debugging also require
interactivity, but these techniques do not require petastaa processing, making out-of-core a viable approach.
6.1.4. Idle time In situ processing should not be used when the postprocgissibursty”. The inherent idle time

is not a good use of the supercomputer. Data exploration sadhdebugging often lend themselves to idle time,
S0, in general, in situ processing should not be used foethsss cases.

Of course, in some cases, the ability to ask questions ittteedy can be a time saver, for example when the
alternative is to save the state of the simulation, analya#line and then later reload it. Or when the simulation
is about to veer off track and interactive inspection camiifie this and right the situation (i.e. computational
steering). These examples argue that bursty use cases extrémely useful with in situ processing. Yet, the

3 They can do this with enough refinement, but this essentially becomes-oateoin this case.



Pure Parallelism  In Situ Multires | Out-of-core

Data Exploration Yes No Yes No
Quantitative Analysis

Basic Yes Yes No Yes

Advanced Yes ISometimes| No Yes

Physics-based Yes ISometimes| No Yes
Comparative Analysis

Image-Based No No Yes

Data-Level No No Yes

Topological No No Yes
Visual Debugging

Individual Queries Yes No Yes Yes

Aggregate Queries Yes Yes No ?
Moviemaking

Presentation-oriente Yes Yes No Yes

Exploration-oriented Yes Yes Yes Yes

Table 2. The viability of postprocessing techniques for each of the cases. If a technique is viable for a use
case, it is labeled “Yes”, “No” otherwise. For each use caspreferred solution is selected and colored green.
Back up solutions are colored yellow.

overarching point from this section is that we cannot plarusimg this technique to serve these use cases on a
regular basis.

6.2. Summarizing the viability of processing techniquesi$e cases

The last section established which processing techniqeee suitable for our use cases. We summarize these
findings in Table 2. We incorporated the cost table (Table Decide which processing techniques are preferred
for addressing each of our use cases. We color the prefercbditjues green. In the case of in situ processing,
we also choose a backup solution, colored yellow, sincetinmbcessing can only be used when the user knows
what analysis should be done a priori.

Table 1 declared a tie between in situ processing and madiiigon techniques. From Table 2, we see that
“resolving the tie” between these techniques is not necgssathey are mutually exclusive for the use cases we
consider. Further, in situ processing or multi-resolutiechniques can be used to address many of our use cases,
and only comparative analysis falls back to a “high costugoh. Since each row has at least one “Yes”, the
set of use cases we want to consider is fully covered by owegssing techniques; these techniques should be
sufficient to do petascale processing. In the cases wheitiiwas selected, either out-of-core processing or pure
parallelism play a larger role as a backup. Choosing betweenf-core and pure parallelism force a trade off to
be made between runtime costs and machines costs, regpeatikich should be taken on a case-by-case basis.

This analysis has taken place with somewhat broad strokksough the presentation of this information is
black-and-white (Yes or No), there are exceptions, espgeiaen a group is listed as “No.” The purpose of Table
2 isto make a road map for petascale postprocessing foreensgi use cases in a production environment. Further,
this table motivates some important points:

o We will need to employnultiple smart techniques adaptively, based on the work being done.

o We will still have to co-opt the supercomputer to do some afrequired processing.

e By using smart techniques, we will be able to prevent thippting for the majority of the time.
The remaining question, then, is the form to deploy thedenigcies, which is the subject of the following section.

7. An Architecture for Supporting Petascale Postprocessing Use Cases
We will now describe a system that will allow us to realize,aim economical way, Section 6.2’s road map to
deliver all of our use cases at the petascale. The visionhiate a single system (or software architecture) that can



utilize different processing paradigms. In this proposgstesm, algorithms can be implemented in a manner that
is indifferent to the processing paradigm, at least indéffie to the extent possible. This will be done by using data
flow networks (described in Section 7.1) and then contrglliow data flows through these networks (described in
Section 7.2).

7.1. Data flow network overview

The most prevalent design for postprocessing librariesaia flow networks. In this design, algorithms are
implemented in a manner that focuses only on its input andututThis approach allows for algorithms to be
interoperable, to be “plugged together” in dynamic ways bgra to fit their current needs. Further, it is easily
extensible; a new algorithm can be implemented by simplgtorg a new module.

Data flow networks are not without faults. They normally rieguhe data model to be somewhat fikehd
each algorithm must be aware of the data model, or, at a mmiratate which parts of the data model they support.
Further, generally speaking, the modular design meanslpatithms are executed one at a time, rather than all at
one time. The latter is typically more efficient (for one,vbals thrashing memory when the data being processed
at that moment is sufficiently large), but takes much moresliggment time.

7.2. Processing of data
In terms of processing data, the important requirement a¢ #ach algorithm is implemented in a way that
accommodates processing of subsets of the larger dataesst oEthe “smart” techniques can then be implemented
using data flow networks and allowing the underlying systemontrol how data flows through.
e For in situ processing, the data flow network will be instat&il on the simulation code’s processors and the
data operated on will be each processor’s portion of theskta

e For out-of-core processing, one data flow network will beéansated, and subsets of the larger data set will be
read and sent through the network one at a time.

e For multi-resolution, the data at any given time will be soroarse representation of the larger data set, with
previous executions of the network being wiped out as theyeggaced by finer versions of the data set.

e For pure parallelism, each processor will instantiate antidal data flow network, the data set is partitioned,
and each processor is assigned a subset.

Some algorithms can not be implemented in a setting thatdasvare of how the data set, as a whole, is being
processed. For example, algorithms that require all of #ta tb be in memory at one time cannot support out-
of-core techniques. One solution to this problem is to hbeealgorithms communicate their needs to a data flow
network “executive.” The executive can then make decisedmsut which modes of operation are possible. The
contracts mechanism proposed in [3] is ideal for this typeashmunication.

That said, resources for a given analysis are typically fixbidle the analysis is running (“I will be running in
situ”, “I have to run out-of-core”, etc.), so the executivayibe limited to aborting the operation and recommending
a different processing paradigm.

7.3. Viability

Although the proposed system is daunting, the good newsisubrk has taken place to establish its viability. The
Vislt project (of which the author of this paper is a membaryéts all five of these use cases and has demonstrated
promising results in the area of dynamic processing panasli¢/isit has full support for pure parallelism. It also
supports out-of-core processing, although some of itsritllgos are not possible in an out-of-core environment.
Those algorithms set a field in a contract and an executiabhlis the out-of-core mode. (It then falls back to
pure parallelism.) Vislt also is capable of in situ procegsialthough it suffers from the data model conversion
issue described in Section 3.1. There is no multi-resaluigpport, howeveér Regardless, the ability to provide

an environment that allows for algorithms to be implememtelifferent of processing paradigms, combined with
multiple processing paradigms being provided is promising

8. Summary
The ability to postprocess petascale data will be crucithéosuccess of petascale simulations. The current path
being used for terascale postprocessing (pure parallehgimesult in prohibitive hardware costs. Worse, we must

4 Fixed in the sense that adding new fields type (like edge-centered dayaneshes (like ying-yang meshes) is difficult.
5 There is no support for level-of-detail processing. There is fulpsupfor Adaptive Mesh Refinement (AMR) data, but the
user controls what level of refinement is viewed, based on the avaikedderces.



consider many diverse use cases simultaneously. Howegarawaddress this problem by employing a variety of
“smart” processing techniques. None of the techniques enaqea alone. Instead, we must deliver a system that
can adaptively employ these techniques in the appropiitaigions. And, further, we must understand when these
situations occur. All of these ideas have been fleshed ohtsmpaper, to ultimately form a cost effective road map
for proceeding into the area of petascale postprocessing.
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